Toggle light / dark theme

KLOTHO, new Intelligence Quotient boosting gene found

WASHINGTON: Scientists have found that people who have a variant of a longevity gene have improved brain skills such as thinking, learning and memory. Researchers found that increasing levels of the gene, called KLOTHO, in mice made them smarter, possibly by increasing the strength of connections between nerve cells in the brain.

“This could be a major step toward helping millions around the world who are suffering from Alzheimer’s disease and other dementias,” said Dena Dubal, an assistant professor of neurology, the David A Coulter Endowed Chair in Aging and Neurodegeneration at the University of California San Francisco (UCSF) and the lead author of the study published in Cell Reports. “If we could boost the brain’s ability to function, we may be able to counter dementias,” Dubal said.

People who have one copy of a variant, or form, of the KLOTHO gene, called KL-VS, tend to live longer and have lower chances of suffering a stroke whereas people who have two copies may live shorter lives and have a higher risk of stroke. In the study, researchers found that people who had one copy of the KL-VS variant performed better on a battery of cognitive tests than subjects who did not have it, regardless of age, sex or the presence of the apolipoprotein 4 gene, the main genetic risk factor for Alzheimer’s disease.

Gum disease, inflammation, hardened arteries may be linked to stroke risk

Atherosclerosis progresses is driven by chronic inflammation, the more sources of low-grade, smoldering inflammation, the faster atherosclerosis could develop. Gum disease is one such source of inflammation and is associated with a higher incidence of strokes.


Patients with gum disease were three times as likely to have a stroke involving blood vessels in the back of the brain, which controls vision, coordination and other vital bodily functions; and.

French Officials Say Country Has Eliminated COVID-19 Outbreak

French health officials declared an end to the country’s COVID-19 outbreak on Monday.

France had confirmed 12 cases of the coronavirus since it first reached the country on January 24. Unfortunately, one of those patients died from their infection. But the French-language news outlet Le Parisien reports that the remaining 11 have all made complete recoveries — meaning there are no longer any COVID-19 cases in any French hospital.

There are “no longer any hospitalized patients in France,” said Health Minister Olivier Véran, in French. “The last one is cured and is no longer contagious.”

Mice with diabetes “functionally cured” using new stem cell therapy

Diabetes is characterized by trouble producing or managing insulin, and one emerging treatment involves converting stem cells into beta cells that secrete the hormone. Now, scientists have developed a more efficient method of doing just that, and found that implanting these cells in diabetic mice functionally cured them of the disease.

The study builds on past research by the same team, led by Jeffrey Millman at Washington University. The researchers have previously shown that infusing mice with these cells works to treat diabetes, but the new work has had even more impressive results.

“These mice had very severe diabetes with blood sugar readings of more than 500 milligrams per deciliter of blood — levels that could be fatal for a person — and when we gave the mice the insulin-secreting cells, within two weeks their blood glucose levels had returned to normal and stayed that way for many months,” says Millman.

Ancient DNA from Sardinia reveals 6,000 years of genetic history

A new study of the genetic history of Sardinia, a Mediterranean island off the western coast of Italy, tells how genetic ancestry on the island was relatively stable through the end of the Bronze Age, even as mainland Europe saw new ancestries arrive. The study further details how the island’s genetic ancestry became more diverse and interconnected with the Mediterranean starting in the Iron Age, as Phoenician, Punic, and eventually Roman peoples began arriving to the island.

The research, published in Nature Communications, analyzed genome-wide DNA data for 70 individuals from more than 20 Sardinian archaeological sites spanning roughly 6,000 years from the Middle Neolithic through the Medieval period. No previous study has used genome-wide DNA extracted from ancient remains to look at the population history of Sardinia.

“Geneticists have been studying the people of Sardinia for a long time, but we haven’t known much about their past,” said the senior author John Novembre, Ph.D., a leading computational biologist at the Univeristy of Chicago who studies genetic diversity in natural populations. “There have been clues that Sardinia has a particularly interesting genetic history, and understanding this history could also have relevance to larger questions about the peopling of the Mediterranean.”