The body’s home-grown microbiota and bile acids could help boost the immune system to suppress tumor growth.
Category: biotech/medical – Page 19
Significant advances in the diagnosis and treatment of congenital heart disease have transformed patient outcomes, leading to an expanding adult congenital heart disease population. Many of these adults require lifelong procedural interventions, frequently performed in catheterization labs under the guidance of echocardiography. This review explores the transesophageal echocardiographic aspect in key catheterization-based procedures.
Korean scientists at KAIST have developed ground-breaking technology that transforms colon cancer cells into normal cells, preventing their destruction.
Alpha-1-antitrypsin is a so-called protease inhibitor, a type of enzyme inhibitor. It is produced in the liver but exerts its effects in the lungs, where it regulates immune cell activity. This regulation is crucial, and an overactive immune response can cause serious lung diseases.
However, some individuals carry a genetic mutation that causes the alpha-1 protein to fold incorrectly. As a result, too little functional alpha-1 is produced, and insufficient amounts reach the lungs.
The mutation is inherited from one or both parents. About 1 in 20 people in Europe carry the heterozygous form of the mutation—inherited from only one parent—and often experience no symptoms or only mild ones. In contrast, the rarer homozygous form, inherited from both parents, affects approximately 1 in 2000 individuals and is much more severe.
Researchers from the International Institute of Molecular and Cell Biology in Warsaw (IIMCB) have described a new mechanism that improves the efficiency of mRNA-based therapies. The research findings could facilitate the development of novel therapeutics against cancers and infectious diseases.
The scientific experiments were carried out at IIMCB, but important contributions also came from collaborators at the Faculty of Physics and Faculty of Biology of the University of Warsaw, the Medical University of Warsaw, and the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences. The study by the Polish researchers has just been published in Nature.
“mRNA vaccines played a key role in controlling the spread of the pandemic. However, mRNA itself is an exceptionally unstable molecule. This does not affect the safety of the therapy but limits its effectiveness—for example, by shortening the duration of action. A particularly important role in mRNA stability is played by its so-called poly(A) tail. In our research, we examined these limitations,” says Prof. Andrzej Dziembowski from the Laboratory of RNA Biology—ERA Chairs Group at the International Institute of Molecular and Cell Biology in Warsaw, one of the lead authors of the study.
High-intensity electrical pulses have been medically used to destroy tumors while sparing healthy tissue. But lower-intensity pulses may have a different effect—they reshape the battlefield, making tumors more vulnerable to the body’s own defenses.
According to Virginia Tech researchers at the Fralin Biomedical Research Institute at VTC, these lower-intensity pulses don’t kill all the cancer cells outright. Instead, they alter the tumor’s environment, increasing blood vessel density within a day of treatment and boosting lymphatic vessel growth by day three.
These changes may help guide immune cells to the tumor, potentially improving the body’s natural ability to fight cancer.
A small protein involved in neurodegeneration leading to Parkinson’s disease also drives a type of skin cancer known as melanoma, new research finds.
The study, published in the journal Science Advances, suggests new avenues for drug development to reduce the risk of developing both Parkinson’s and skin cancer by targeting the alpha-synuclein protein, which appears to have a critical role in regulating cellular functions.
“Developing drugs that target alpha-synuclein may be useful in both diseases,” said the senior author.
Both the injectable and oral forms of semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, have recently gained attention for their effectiveness in managing weight gain, high blood sugar, and even reducing alcohol cravings.
A new clinical trial, co-led by endocrinologist and diabetes specialist John Buse, MD, PhD, and interventional cardiologist Matthew Cavender, MD, MPH, at the UNC School of Medicine, has demonstrated that the oral form of semaglutide significantly lowers the risk of cardiovascular events in individuals with type 2 diabetes, atherosclerotic cardiovascular disease.
Cardiovascular disease (CVD) encompasses a range of disorders affecting the heart and blood vessels, including coronary artery disease, heart attack, stroke, and hypertension. These conditions are primarily driven by atherosclerosis, a process where plaque builds up in the arterial walls, leading to narrowed or blocked arteries. Risk factors include smoking, unhealthy diet, lack of exercise, obesity, and genetic predisposition. CVD remains a leading cause of global mortality, emphasizing the importance of lifestyle changes, medical interventions, and preventive measures in managing and reducing the risk of heart-related illnesses.
A new discovery could pave the way for more effective cancer treatment by helping certain drugs work better inside the body. Scientists at Duke University School of Medicine, University of Texas Health Science Center at San Antonio, and University of Arkansas have found a way to improve the uptake of a promising class of cancer-fighting drugs called PROTACs, which have struggled to enter cells due to their large size.
The new method works by taking advantage of a protein called CD36 that helps pull substances into cells. By designing drugs to use this CD36 pathway, researchers delivered 7.7 to 22.3 times more of the drug inside cancer cells, making the treatment up to 23 times more potent than before, according to the study published April 17 in Cell.
Data from mouse studies shows this enhanced uptake led to stronger tumor suppression without making the drugs harder to dissolve or less stable.
Most energy generators currently employed within the electronics industry are based on inorganic piezoelectric materials that are not bio-compatible and contribute to the pollution of the environment on Earth. In recent years, some electronics researchers and chemical engineers have thus been trying to develop alternative devices that can generate electricity for medical implants, wearable electronics, robots and other electronics harnessing organic materials that are safe, bio-compatible and non-toxic.
Researchers at the Materials Science Centre, Indian Institute of Technology Kharagpur recently introduced a new device based on seeds from the mimosa pudica plant, which can serve both as a bio-piezoelectric nanogenerator and a self-chargeable supercapacitor. Their proposed device, outlined in a paper published in the Chemical Engineering Journal, was found to achieve remarkable efficiencies, while also having a lesser adverse impact on the environment.
“This study was motivated by the need for biocompatible, self-sustaining energy systems to power implantable medical devices (e.g., pacemakers, neurostimulators) and wearable electronics,” Prof. Dr. Bhanu Bhusan Khatua, senior author of the paper, told Tech Xplore.