Toggle light / dark theme

Curr Top Microbiol Immunol. 2005;287:1–30.

In addition to the SARS coronavirus (treated separately elsewhere in this volume), the complete genome sequences of six species in the coronavirus genus of the coronavirus family [avian infectious bronchitis virus-Beaudette strain (IBV-Beaudette), bovine coronavirus-ENT strain (BCoV-ENT), human coronavirus-229E strain (HCoV-229E), murine hepatitis virus-A59 strain (MHV-A59), porcine transmissible gastroenteritis-Purdue 115 strain (TGEV-Purdue 115), and porcine epidemic diarrhea virus-CV777 strain (PEDV-CV777)] have now been reported. Their lengths range from 27,317 nt for HCoV-229E to 31,357 nt for the murine hepatitis virus-A59, establishing the coronavirus genome as the largest known among RNA viruses.

Cells can both survive and multiply under more stress than previously thought, shows research from the Faculty of Health and Medical Sciences.

This was found by inhibiting the essential gene DNA polymerase alpha, or POLA1, which initiates DNA replication during .

The discovery gives researchers new insights into DNA replication and may potentially be used for a new type of cancer treatment. Research Leader and Associate Professor Luis Toledo of the Center for Chromosome Stability at the Department of Cellular and Molecular Medicine states as follows:

Hod Hasharon-based BATM Advanced Communications Limited announced that they have developed a new diagnostic kit to detect the novel coronavirus.

As the CEO of the company Dr. Zvi Marom explained to The Jerusalem Post, compared to the kit that is currently used by hospitals all over the world, the product conceived by BATM has the advantage of being faster and more accurate and, within a few weeks, the company aims to set the cost at approximately NIS 1 per test. The kit is expected to be CE approved next week.

Scientists at the Washington University School of Medicine in St. Louis revealed on February 24 that they had successfully converted human stem cells into insulin-producing cells and demonstrated in mice infused with the converted cells that they can act as a rapid cure to diabetes.

The research transformed other types of cells into beta pancreatic cells which produce the insulin hormone needed by the body to break up blood sugar.

The findings were published in the journal Nature Biotechnology.