Toggle light / dark theme

An Experimental Drug Protects Covid-19 Patients, Eli Lilly Claims

A single infusion of an experimental drug markedly reduced levels of the coronavirus in newly infected patients and lowered the chances that they would need hospitalization, the drug’s maker announced on Wednesday.

The drug is a monoclonal antibody, a manufactured copy of an antibody produced by a patient who recovered from Covid-19, the illness caused by the coronavirus. Many scientists hope that monoclonal antibodies will prove to be powerful treatments for Covid-19, but they are difficult and expensive to manufacture, and progress has been slow.

A so-called monoclonal antibody lowered levels of the coronavirus and prevented hospitalizations. The research has not yet been vetted by independent experts.

New glove-like device mimics sense of touch

What if you could touch a loved one during a video call—particularly in today’s social distancing era of COVID-19—or pick up and handle a virtual tool in a video game?

Pending user tests and funding to commercialize the new technology, these ideas could become reality in a couple of years after UNSW Sydney engineers developed a new haptic which recreates the .

Haptic technology mimics the experience of touch by stimulating localized areas of the skin in ways that are similar to what is felt in the real world, through force, vibration or motion.

How bats have outsmarted viruses—including coronaviruses—for 65 million years

Although the SARS-CoV-2 virus has sickened more than 14 million people, bats contract similar viruses all the time without experiencing any known symptoms. Now, the newly sequenced genomes of six species spanning the bat family tree reveal how they’ve been outsmarting viruses for 65 million years. The findings are an “excellent starting point for understanding the superstar immune systems of bats,” says Laurel Yohe, a postdoc at Yale University who studies bat evolution and was not involved with the work. With more than 1400 species, bats are the second most diverse group of mammals on Earth. They live on every continent except Antarctica, and range in size from two to more than 1000 grams. They fly, they echolocate, and some live up to 41 years—a long time for animals of their size. They are also known to carry many different kinds of viruses, including coronaviruses, with no ill effects.


Newly sequenced genomes reveal the secrets of their “superstar” immune systems.

New bionics let us run, climb and dance | Hugh Herr

Visit http://TED.com to get our entire library of TED Talks, transcripts, translations, personalized talk recommendations and more.

Hugh Herr is building the next generation of bionic limbs, robotic prosthetics inspired by nature’s own designs. Herr lost both legs in a climbing accident 30 years ago; now, as the head of the MIT Media Lab’s Biomechatronics group, he shows his incredible technology in a talk that’s both technical and deeply personal — with the help of ballroom dancer Adrianne Haslet-Davis, who lost her left leg in the 2013 Boston Marathon bombing, and performs again for the first time on the TED stage.

The TED Talks channel features the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and more. You’re welcome to link to or embed these videos, forward them to others and share these ideas with people you know. For more information on using TED for commercial purposes (e.g. employee learning, in a film or online course), submit a Media Request here: http://media-requests.TED.com

Follow TED on Twitter: http://twitter.com/TEDTalks
Like TED on Facebook: http://facebook.com/TED

How gene therapy could help astronauts survive deep space deadly radiation

Over the past five decades, space travel advocates have been pushing to expand our footprint in space. They dream about lunar bases, missions to Mars and colonies in free space. The visions are ever changing, with government efforts joined by those of private companies like Elon Musk’s SpaceX — in the midst of an effort to send tourists on a trip around the Moon — gravitating toward the space tourism sector. While the goals and how to accomplish them are in constant flux, there remain certain obstacles that must be overcome before we take that next big step. And one of the biggest is the need to protect the health of our future space explorers.

That’s what’s prompted NASA to turn to the fast-moving world of gene therapy to solve several potential medical issues facing astronauts on lengthy space missions.

The US space agency and the associated Translational Institute for Space Health Research (TRISH) at the Baylor College of Medicine are now calling for proposals from private companies and other groups to develop a kind of gene therapy for astronauts. But this would be different than recent gene therapies that target specific diseases such as hemophilia or various types of cancer. Instead, the idea here is to minimize the damage from space radiation through a kind of preventive treatment. Exposure to radiation in space can cause cancer, cardiovascular disease, cataracts and the loss of cognitive function due to accelerated death of brain cells. These different disease categories involve very different mechanisms — cancer and heart disease result from radiation damaging DNA, while loss of brain tissue results simply from radiation killing off mature cells, and still other diseases result from radiation destroying stem cells.

Geometry Points to Coronavirus Drug Target Candidates

When a virus invades your cells, it changes your body. But in the process, the pathogen changes its shape, too. A new mathematical model predicts the points on the virus that allow this shape-shifting to occur, revealing a new way to find potential drug and vaccine targets. The unique math-based approach has already identified potential targets in the coronavirus that causes COVID-19.

Outlined in April in the Journal of Computational Biology, the strategy predicts protein sites on viruses that stash energy—important spots that drugs could disable. In a rare feat, the work proceeds from pure mathematics, says study author and mathematician Robert Penner of the Institute of Advanced Scientific Studies in France. “There’s precious little pure math in biology,” he adds. The paper’s predictions face a long road before they can be verified experimentally, says John Yin, who studies viruses at the University of Wisconsin–Madison and was not involved in the research. But he agrees that Penner’s approach has potential. “He’s coming at this from a mathematician’s point of view—but a very scientifically informed mathematician,” Yin says. “So that’s highly rare.”

Penner’s method takes advantage of the fact that certain viral proteins alter their shape dramatically when viruses breach cells, and this transformation depends on unstable features. (A stable protein site, by definition, resists change.) By identifying “high free energy sites”—areas on a viral protein that store lots of energy—Penner realized he could spot likely “spring” points that mediate this change in shape. He calls such high-energy spots exotic sites. Finding them required some complex math.

AI-designed “hyperfoods” can possibly help prevent cancer

Food contains many bioactive molecules similar to anti-cancer drugs. ML can discover such components and design cancer-beating hyperfoods.


The food we eat contains thousands of bioactive molecules, some of which are similar to anti-cancer drugs. Modern machine learning techniques can help discover such components and help design “hyperfoods” that will let us live longer and healthier.

Doctors Are Preparing to Implant the World’s First Human Bionic Eye

It’s essentially the guts of a smartphone combined with brain-implanted micro electrodes, as TechCrunch reports. The “Gennaris bionic vision system,” a project that’s more than ten years in the making, bypasses damaged optic nerves to allow signals to be transmitted from the retina to the vision center of the brain.

The system is made up of a custom-designed headgear, which includes a camera and a wireless transmitter. A processor unit takes care of data crunching, while a set of tiles implanted inside the brain deliver the signals.

“Our design creates a visual pattern from combinations of up to 172 spots of light (phosphenes) which provides information for the individual to navigate indoor and outdoor environments, and recognize the presence of people and objects around them,” Arthur Lowery, professor at Monash University’s Department of Electrical and Computer Systems Engineering, said in a statement.