Toggle light / dark theme

Researchers identify mechanism for regenerating hair follicle stem cells

Harvard University researchers have identified the biological mechanism of how chronic stress impairs hair follicle stem cells, confirming long-standing observations that stress might lead to hair loss.

In a mouse study published in the journal Nature, the researchers found that a major stress hormone causes to stay in an extended resting phase, without regenerating the follicle and hair. The researchers identified the specific cell type and molecule responsible for relaying the stress signal to the stem cells, and showed that this pathway can be potentially targeted to restore hair growth.

“My lab is interested in understanding how stress affects stem cell biology and tissue biology, spurred in part by the fact that everyone has a story to share about what happens to their skin and hair when they are stressed. I realized that as a skin stem cell biologist, I could not provide a satisfying answer regarding if stress indeed has an impact—and more importantly, if yes, what are the mechanisms,” said Ya-Chieh Hsu, Ph.D., the Alvin and Esta Star Associate Professor of Stem Cell and Regenerative Biology at Harvard and senior author of the study. “The skin offers a tractable and accessible system to study this important problem in depth, and in this work, we found that stress does actually delay stem cell activation and fundamentally changes how frequently hair follicle stem cells regenerate tissues.”

DNA can be collected from air, scientists show for first time

In a first, scientists have revealed that animal and human DNA can be plucked straight out of thin air. The development heralds a promising new scientific technique with possible applications for ecology, forensics, and medicine, according to a new study.


“For example, this technique could help us to better understand the transmission of airborne diseases such as COVID-19.”

The research team is working with partners in industry, including the company NatureMetrics, to see how the technique can be applied in other ways, the university said.

Vaccine passports launched in Las Vegas but privacy, choice still concerns

A handful of passports are already in the works, including two in Las Vegas. It is not yet clear if any Las Vegas businesses will limit access solely to vaccinated guests.


Las Vegas is no stranger to exclusive VIP lists, but there’s a new way of limiting guest access coming to town: vaccine passports.

These digital credential systems can show whether someone has been vaccinated against COVID-19 and can help businesses limit access to those who have been inoculated. The systems were designed to increase health and safety at various venues, but experts warn of pushback over concerns on privacy and personal choice.

“What we’re seeing throughout the pandemic is people guarding their personal rights, and I think a lot of people will find that intrusive in their day to day,” said Jonathan Day, an associate professor of hospitality and tourism management at Purdue University.

Social Determinants of Health Impact Fetal Brain Development

New data from Children’s National Hospital shows parental experience with a number of social determinants of health can ultimately impact brain development in utero, something researchers said should suggest future community health intervention among pregnant people. The data, published in JAMA Network Open, specifically found poorer brain development in fetuses among pregnant people with low socioeconomic status (SES), low educational attainment, and limited employment opportunity.


New data from Children’s National Hospital has found that social determinants of health like income, education, and occupation can impact fetal brain development, following that child into life.

Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain

As brain activity-dependent human genes are of great importance in human neuropsychiatric disorders we also examined the expression of these genes to postmortem RNAseq databases from patients suffering from various neurological and psychiatric disorders (Table 1). Datasets were chosen based on similarities in tissue processing and RNAseq methodology to our own protocol. We performed a PCA (Principal Component Analysis) of our fresh brain compared to postmortem brain from healthy, Parkinson’s, Schizophrenia, Huntington’s, and Autism brains for the top 500 brain activity-dependent genes that showed the greatest reduction in the healthy postmortem samples. The PCA revealed a significant separation between the 4 fresh samples and the postmortem samples, independent of whether or not the fresh tissue was from epileptic (high activity, H) or non-epileptic (low activity, L) brain regions (Fig. 2 J). This further demonstrates a selective reduction of activity-dependent genes in postmortem brain independent of whether the underlying tissue is electrically active or not.

The sudden removal of brain tissue from a living person in many ways mimics a catastrophic event that occurs with a hypoxic brain injury or a traumatic death with exsanguination. The human brain has high energy needs, estimated to be 10 times that of other tissues21. As a means to understand how the postmortem interval selectively affects some genes and not others in human neocortex, we performed RNAseq and histological analyses in cortical brain tissue as a function of time from 0–24 h at 24 °C in order to simulate a postmortem interval. Neuropathological examination of the tissue used for this study showed a normal-appearing cortical pattern with no histopathologic abnormalities. RNAseq analysis showed a loss of brain activity-dependent genes that were 3-times more prone to be degraded than expected by chance compared to more stable housekeeping genes (Table 2). The threshold to detect activity-dependent genes was related to the probability of being affected by the PMI. The higher the relative expression of the brain activity gene, the more it was enriched in the population of genes affected by the PMI. These findings confirm that genes involved in brain activity are more prone to degradation during the PMI.

One possible explanation for the selective loss of activity-dependent genes could relate to the stability of various cell populations during the simulated PMI. As a means to implicate specific cell populations that could be responsible for the reduction of genes during the simulated PMI we used a clustering algorithm as we have previously described9. We found that 1427 genes (71% known brain activity-dependent genes) could be clustered across the seven time points of the simulated PMI. For these clusters, we used AllegroMcode to identify two main clusters. One cluster of 317 rapidly declining genes was predicted to be neuronal and strongly overlapped with the activity-dependent genes. A second cluster of 474 genes was predicted to be glial, including astrocytes and microglia (Fig. 3A). Remarkably, as the neuronal cell cluster rapidly fell, there was a reciprocal and dramatic increase in the expression of the glial cell cluster (Fig. 3B).

Two tech companies announce their move to Northern Nevada

In Wednesday’s announcement, StemExpress CEO Cate Dyer said the COVID-19 pandemic created new demand for her company’s expertise. “When the pandemic first hit, we reached out to the federal government and started looking at ways we could help take seven of our laboratories around the United States and start offering COVID testing on a local basis, not only to support nursing homes, but Indian Tribal Communities as well as just the general public.”

PayCertify is a financial technology (FinTech) firm that “encompasses both a complete merchant and consumer experience front to back, pulling analytics and valuable insights to connect data sets in real-time from both the consumer and merchant side of the transaction.”

The two companies are expected to bring a combined 200 biotech and fintech jobs to the region.

Artificial life made in lab can grow and divide like natural bacteria

SYNTHETIC cells made by combining components of Mycoplasma bacteria with a chemically synthesised genome can grow and divide into cells of uniform shape and size, just like most natural bacterial cells.

In 2016, researchers led by Craig Venter at the J. Craig Venter Institute in San Diego, California, announced that they had created synthetic “minimal” cells. The genome in each cell contained just 473 key genes thought to be essential for life.

Synthetic organism undergoes cell division in breakthrough study

For the first time, a team of scientists has created a synthetic single-celled organism that can divide and grow like a regular living cell. This breakthrough could lead to designer cells that can produce useful chemicals on demand or treat disease from inside the body.

This new study, by scientists from the J. Craig Venter Institute (JCVI), the National Institute of Standards and Technology (NIST) and MIT, builds on over a decade’s work in creating synthetic lifeforms. In 2010 a JCVI team created the world’s first cell with a synthetic genome, which they dubbed JCVI-syn1.0.

In 2016, the researchers followed that up with JCVI-syn3.0, a version where the goal was to make the organism as simple as possible. With only 473 genes, it was the simplest living cell ever known – by comparison, an E. coli bacterium has well over 4000 genes. But perhaps it was too simple, because the cells weren’t all that effective at dividing. Rather than uniform shapes and sizes, some of them would form filaments and others wouldn’t fully separate.

/* */