Toggle light / dark theme

This movement towards a more automated society has some positives: it will help us stay healthy during times like the present, it will drive down the cost of goods and services, and it will grow our GDP in the long run. But by leaning into automation, will we be enabling a future that keeps us more physically, psychologically, and emotionally distant from each other?

We’re in a crisis, and desperate times call for desperate measures. We’re sheltering in place, practicing social distancing, and trying not to touch each other. And for most of us, this is really unpleasant and difficult. We can’t wait for it to be over.

For better or worse, this pandemic will likely make us pick up the pace on our path to automation, across many sectors and processes. The solutions people implement during this crisis won’t disappear when things go back to normal (and, depending who you talk to, they may never really do so).

As the COVID-19 cases continue to rise globally, the National Medical Products Administration of China has approved the first-ever antiviral medicine called Favilavir. This medicine is said to possibly treat the now-declared pandemic illness.

Over the weekend, Taizhou’s city government announced that Favilavir, which was initially formulated by a Chinese-owned pharmaceutical firm, is the first medicine authorized to stop the widespread of this fatal illness. At present, this drug is being promoted with the label, Avigan.

According to the Ministry of Science and Technology of China, the Favilavir of Hisun Pharmaceutical is among the three drugs that have presented results for hindering COVID-19 (in initial trials) from spreading and further damaging the health of the people worldwide.

A new method to accurately record brain activity at scale has been developed by researchers at the Crick, Stanford University and UCL. The technique could lead to new medical devices to help amputees, people with paralysis or people with neurological conditions such as motor neurone disease.

The research in mice, published in Science Advances, developed an accurate and scalable method to record brain activity across large areas, including on the surface and in deeper regions simultaneously.

The genetic information of an organism is stored within DNA. It contains the code for making other molecules that make all cells and organs of the body functional. Interestingly, only 1% of DNA makes up genes, of which proteins are produced via RNA intermediaries. There is much debate on the role of the remaining DNA, but different types of RNA are thought to be produced from it and direct the fate of the cell. Even though each cell of the body contains the same DNA, how they read and process DNA to make RNA can differ quite dramatically between single cells. This has especially been known for the transcriptome, which includes all RNA that are produced from genes, but not so much for other RNA.

“Genes have been the main focus of biological research for a long time,” says lead author of the study Haruka Ozaki. “We wanted to focus on what we call read coverage of single-cell RNA sequencing (scRNA-seq) data, which also includes RNA that are not products of genes. Although we can measure the amount of different RNA a single cell produces by scRNA-seq technologies, we wanted to come up with a new method that also visualizes specifically read coverage, because only then we can get a full picture of RNA biology and how it contributes to cell biology at the single-cell level.”


To achieve their goal, the researchers developed a new computational tool that they called Millefy uses existing scRNA-seq data to visualize read coverage of single cells as a heat map, illustrating differences between individual cells on a relative scale. The researchers first demonstrated the utility of Millefy in a well-established mouse embryonic stem cell model by showing heterogeneity of read coverage between developing cells. They then applied Millefy to cancer cells from patients with triple-negative breast cancer, a particularly aggressive type of breast cancer. Not only did Millefy show heterogeneity between cancer cells in general, but it revealed heterogeneity in a specific aspect of RNA biology that had previously been unknown.

“Our approach simplifies the investigation of cellular heterogeneity in RNA biology using scRNA-seq data,” says Ozaki. ” Our findings could help identify what makes single cells individual, which would help us understand why patients with the same disease are often treated with varying success. Additionally, to enable rapid progress in field, we made Millefy publicly available to the scientific community.”

Well this is good news. Now they just need to pour every dime into the manufacturing and hurry the hell up.


The Food and Drug Administration (FDA) has approved the first coronavirus diagnostic test that can be conducted entirely at the point of care.

The test from California-based Cepheid will deliver results in about 45 minutes — much faster than current tests that require a sample to be sent to a centralized lab, where results can take days.

The test has been designed to operate on any of Cepheid’s more than 23,000 automated GeneXpert Systems worldwide, of which 5,000 are in the U.S., the company said. The systems are already being used to test for conditions such as HIV and tuberculosis.

Engineers have created a tiny device that can rapidly detect harmful bacteria in blood, allowing health care professionals to pinpoint the cause of potentially deadly infections and fight them with drugs.

The Rutgers coauthored study, led by researchers at Rochester Institute of Technology, is published in the journal ACS Applied Materials & Interfaces.

“The rapid identification of drug-resistant bacteria allows to prescribe the right drugs, boosting the chances of survival,” said coauthor Ruo-Qian (Roger) Wang, an assistant professor in the Department of Civil and Environmental Engineering in the School of Engineering at Rutgers University-New Brunswick.

Coronavirus has claimed at least 10,447 lives with a total of 254,701 confirmed cases worldwide. A total of 89,071 people have recovered from the virus. The outbreak has led to panic and pandemonium. As we reported yesterday, there are only three major types of treatments: antiviral drug, antibody solution (including blood plasma) and vaccine.

Even though the need to develop new vaccines seems to be getting a lot of headlines, vaccine, however, does not provide the immediate relief for people who are already infected with the virus. In addition, experts are saying that it may take between 12 to 24 months before the vaccine becomes available. Some are going as far as saying it could be 2022 before we see a COVID-19 vaccine.

In the meantime, more companies are coming out with existing antiviral and experimental drugs that have proven to show promising results in treating COVID-19 patients. While there are no FDA-approved therapeutics or drugs to treat, cure or prevent COVID-19, there are several FDA-approved treatments that may help ease the symptoms from a supportive care perspective.