Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1867

Jul 16, 2019

Targeting Notum Improves Tissue Regeneration

Posted by in categories: biotech/medical, life extension

Researchers at the University of Helsinki have shown why the regenerative capacity of the cells lining the intestines declines with age and that targeting a particular enzyme can restore the regenerative potential of this tissue.

Notum blocks the Wnt pathway

During normal function, the cells of the intestinal epithelium, a single cell layer that forms the lining of both the small and large intestine, are replaced by stem cells, which create healthy replacement cells to counter losses from injury, damage, disease, and aging. These cells are roused into action via the Wnt signaling pathway, which is activated through signals sent by other cells in the tissue.

Jul 16, 2019

AI Drug Hunters Could Give Big Pharma a Run for Its Money

Posted by in categories: biotech/medical, economics, health, robotics/AI

But a less-noticed win for DeepMind, the artificial-intelligence arm of Google’s parent Alphabet Inc., at a biennial biology conference could upend how drugmakers find and develop new medicines. It could also dial up pressure on the world’s largest pharmaceutical companies to prepare for a technological arms race. Already, a new breed of upstarts are jumping into the fray.


Alphabet’s DeepMind cracked a problem that long vexed biologists, heating up a technological arms race in health care.

Jul 15, 2019

Study gives insight into sun-induced DNA damage and cell repair

Posted by in categories: biotech/medical, innovation

A team led by a Baylor University researcher has published a breakthrough article that provides a better understanding of the dynamic process by which sunlight-induced DNA damage is recognized by the molecular repair machinery in cells as needing repair.

Ultraviolet light from the sun is a ubiquitous carcinogen that can inflict structural damage to the cellular DNAs DNA carries important blueprints for cellular functions, failure in removing and restoring damaged parts of DNA in a timely fashion can have detrimental outcomes and lead to skin cancers in humans, said lead author Jung-Hyun Min, Ph.D., associate professor of chemistry and biochemistry in Baylor’s College of Arts & Sciences.

Min and her team showed how the repair Rad4/XPC would bind to one such UV-induced DNA damage—6–4 photoproduct—to mark the damaged site along the DNA in preparation for the rest of the nucleotide excision repair (NER) process in cells.

Jul 15, 2019

Bolonkin Explores Ultimate Uploading and Technology

Posted by in categories: bioengineering, biotech/medical, nanotechnology, nuclear energy

One of the main speculations about future technology is uploading. This is where our minds are copied in exact detail from our biological physical bodies and then created in artificial bodies. Alexander Bolonkin has posited many kinds of technology over the decades. He has a recent work which is summarized here where he considers that future uploading will mean that we can then use super-technology (nanotechnology, nuclear fusion etc…) to make people into literal gods and supermen. We can use control of matter, energy and information to make what he calls the E-man. Bolonkin then indicates that uploading and creation of minds could be used for the resurrection of long-dead people. This would be where we create the very close approximation of dead people. This would be like using gene editing to turn an African Elephant into a Whooly Mammoth. The vast technological capability would let us actualize what would be a simulation into living entities.

Bolonkin’s Case for E-Man and Resurrection

Alexander Bolonkin looks at methods and possibilities for electronic resurrection of long-dead outstanding personalities. He also considers the principles and organization of the new E-society, its goals and conditions of existence.

Jul 15, 2019

Neurotech Salon lets talk Brain Computer Interfaces, Neuroscience, and Code

Posted by in categories: biotech/medical, computing, neuroscience

Lets meet to talk brain computer interfaces, neuroscience, collaboration and coding. Lets pitch projects to one another, join existing projects, write code together, build new brain computer interfaces and more.

Thinking about past NeurotechX SF meetups I think I like the Salon aspect the most, where people just meet up to talk about neuroscience, brain computer interfaces and coding. So I’m renaming this event series to “Neurotech Salon”, it’s every two weeks in San Francisco at the Red Victorian! Get ready to meet interesting people to talk about things like the future of brain machine interfaces, you can pitch your project, or perhaps join someone elses project, you can talk about your work in developing software, hardware, or your work in medical research, or talk about your studies as an academic.

Confirm your RSVP by making a charitable donation to a real charity like this one here https://www.facebook.com/donate/837355799969191/ in the amount of $5 dollars or more. If you feel like you can’t afford it just skip a meal, and take the money you would have paid for that meal and apply it to this event.

Jul 15, 2019

A Brief Guide to the Current CRISPR Landscape

Posted by in category: biotech/medical

Hundreds of CRISPR patents have been granted around the world, and the number of applications continues to grow at a rapid pace.

Jul 15, 2019

Lipid Nanoparticles Deliver CRISPR/Cas9 into Organs with High Efficiency

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

Researchers at Tufts University and the Chinese Academy of Sciences have developed a new lipid nanoparticle which can deliver CRISPR/Cas9 gene editing tools into organs with high efficiency, suggesting that the system is promising for clinical applications.

The CRISPR/Cas9 system is currently being investigated as a way to treat a variety of diseases with a genetic basis, including Duchenne muscular dystrophy, Huntington’s, and sickle cell disease. While the system has significant promise, there are some issues that need to be resolved before it can be used clinically. CRISPR/Cas9 is a large complex, and it is difficult to get it inside cell nuclei where it is needed for gene editing.

Scientists have tried a variety of delivery vehicles for CRISPR/Cas, which are intended to carry the gene editing tools to their location and help them enter the cell and nucleus. These have included viruses and various types of nanoparticle. However, to date, these have suffered from low efficiency, whereby very little of the delivered agent reaches the cells or organs where it is needed.

Jul 15, 2019

Game-theory research better allocates military resources, fight cancer

Posted by in categories: biotech/medical, cybercrime/malcode, military, robotics/AI

U.S. Army game-theory research using artificial intelligence may help treat cancer and other diseases, improve cybersecurity, deploy Soldiers and assets more efficiently and even win a poker game.

New research, published in Science, and conducted by scientists at Carnegie Mellon University, developed an artificial intelligence program called Pluribus that defeated leading professionals in six-player no-limit Texas hold’em poker.

The Army and National Science Foundation funded the mathematics modeling portion of the research, while funding from Facebook was specific to the poker.

Jul 15, 2019

Maria Blasco at Ending Age-Related Diseases 2019

Posted by in categories: biotech/medical, life extension

Leading telomere researcher Maria Blasco press conference at the Ending Age-Related Diseases conference, New York, NY, July 12, 2019.

Jul 15, 2019

Researchers develop computer model of ferrofluid motion

Posted by in categories: biotech/medical, computing, nanotechnology

Ferrofluids, with their mesmeric display of shape-shifting spikes, are a favorite exhibit in science shows. These eye-catching examples of magnetic fields in action could become even more dramatic through computational work that captures their motion.

A KAUST research team has now developed a computer model of motion that could be used to design even grander ferrofluid displays. The work is a stepping stone to using to inform the use of ferrofluids in broad range of practical applications, such as medicine, acoustics, radar-absorbing materials and nanoelectronics.

Ferrofluids were developed by NASA in the 1960s as a way to pump fuels in low gravity. They comprise nanoscale magnetic particles of iron-laden compounds suspended in a liquid. In the absence of a magnetic , ferrofluids possess a perfectly smooth surface. But when a magnet is brought close to the ferrofluid, the particles rapidly align with the magnetic field, forming the characteristic spiky appearance. If a magnetic object is placed in the ferrofluid, the spikes will even climb the object before cascading back down.