Toggle light / dark theme

MIT Establishes New Initiative to Meld Humans and Machines

The K. Lisa Yang Center for Bionics has been established thanks to a $24 million donation from philanthropist Lisa Yang, according to an MIT announcement. That’s probably not enough attain the center’s enormously ambitious goals of restoring neural function and rebuilding lost limbs, but it does get the ball rolling and bring together MIT faculty with a variety of specialties toward a common big-picture objective — potentially serving as a much-needed accelerant for disability tech research.

The new research center will fall under the leadership of MIT Media Lab professor Hugh Herr, who is a double amputee himself and has come to be known as a leader in the field of robotic prosthetics. In the MIT announcement, Herr said that he sees this new initiative as an important step toward eliminating physical disabilities altogether.

“The world profoundly needs relief from the disabilities imposed by today’s nonexistent or broken technologies,” Herr said. “We must continually strive towards a technological future in which disability is no longer a common life experience. I am thrilled that the Yang Center for Bionics will help to measurably improve the human experience for so many.”

Japan Has Started Selling The World’s First Genome-Edited Tomato — Here Is What They Changed

Leave it to the Japanese to come up with technology-induced fruit

A Tokyo-based startup called Sanatech Seed Co. teamed up with scientists at the University of Tsukuba to develop a new variety of tomatoes with the help of CRISPR/Cas9 gene-editing technology. The result was a Sicilian Rouge High GABA which contains high levels of gamma-aminobutyric acid (GABA), an amino acid that is believed to have lower blood pressure and help in relaxation.

The company was able to add high levels of GABA by removing an inhibitory domain within the tomato’s genome to enable the high production of GABA. According to Shimpei Takeshita, President of Sanatech Seed and Chief Innovation Officer of Pioneer EcoScience, the company was given permission to commercialize the genetically altered Sicilian Rouge GABA variety last December. The contract farmers had been growing them ever since and now these tomatoes are finally ready to hit the stores and become a useful product.

A 3D printed vaccine patch offers vaccination without a shot

Scientists at Stanford University and the University of North Carolina at Chapel Hill have created a 3D-printed vaccine patch that provides greater protection than a typical vaccine shot.

The trick is applying the vaccine patch directly to the skin, which is full of immune cells that vaccines target.

The resulting immune response from the vaccine patch was 10 times greater than vaccine delivered into an arm muscle with a needle jab, according to a study conducted in animals and published by the team of scientists in the Proceedings of the National Academy of Sciences.


Scientists at Stanford University and University of North Carolina at Chapel Hill create a vaccine patch with microneedles that dissolve into the skin.

Watch Nanobot Carry Lazy Sperm to Fertilize Living Eggs

A sperm’s task may appear straightforward; after all, all it needs to do is swim to an egg and insert genetic material. However, in some cases, a healthy sperm’s inability to swim may result in infertility, which affects around 7 percent of all males.

This condition is called asthenozoospermia, and there is currently no cure. However, one study conducted in 2016 and published in the journal Nano Letters has set the example for what could be possible in the future: A team of researchers from the Institute for Integrative Nanosciences at IFW Dresden in Germany developed tiny motors that can make sperm swim better as they make their way to an egg, essentially acting as a taxi.

These so-called “spermbots” basically consist of a tiny micromotor, which is basically a spiraling piece of metal that wraps around the sperm’s tail. Serving as an “on-board power supply”, the motor navigates the sperm via a magnetic field, helping the sperm swim to the egg with ease. When the sperm makes contact with the egg for fertilization, the motor slips right off, and the magnetic field doesn’t harm any of the cells involved, making it ideal for usage on living tissue, according to the researchers.

New bionics center established at MIT with $24 million gift

A deepening understanding of the brain has created unprecedented opportunities to alleviate the challenges posed by disability. Scientists and engineers are taking design cues from biology itself to create revolutionary technologies that restore the function of bodies affected by injury, aging, or disease — from prosthetic limbs that effortlessly navigate tricky terrain to digital nervous systems that move the body after a spinal cord injury.

With the establishment of the new K. Lisa Yang Center for Bionics, MIT is pushing forward the development and deployment of enabling technologies that communicate directly with the nervous system to mitigate a broad range of disabilities. The center’s scientists, clinicians, and engineers will work together to create, test, and disseminate bionic technologies that integrate with both the body and mind.

Remote assessment of health by robots from anywhere in the world

Intelligent sensing and tele-presence robotic technology, enabling health practitioners to remotely assess a person’s physical and cognitive health from anywhere in the world, is being pioneered in research co-led at the University of Strathclyde.

The technology could aid cost-effective diagnosis, more regular monitoring and health assessments alongside assistance, especially for people living with conditions such as Alzheimer’s disease and other cognitive impairments.

The system was demonstrated for the first time to the UK Government Minister, Iain Stewart during a visit to the construction site of the National Robotarium, hosted at Heriot-Watt University, which is co-leading the research with Strathclyde.

Artificial Intelligence Accurately Predicts RNA Structures, Too

Researchers recently showed that a computer could “learn” from many examples of protein folding to predict the 3D structure of proteins with great speed and precision. Now a recent study in the journal Science shows that a computer also can predict the 3D shapes of RNA molecules [1]. This includes the mRNA that codes for proteins and the non-coding RNA that performs a range of cellular functions.

This work marks an important basic science advance. RNA therapeutics—from COVID-19 vaccines to cancer drugs—have already benefited millions of people and will help many more in the future. Now, the ability to predict RNA shapes quickly and accurately on a computer will help to accelerate understanding these critical molecules and expand their healthcare uses.

Like proteins, the shapes of single-stranded RNA molecules are important for their ability to function properly inside cells. Yet far less is known about these RNA structures and the rules that determine their precise shapes. The RNA elements (bases) can form internal hydrogen-bonded pairs, but the number of possible combinations of pairings is almost astronomical for any RNA molecule with more than a few dozen bases.

/* */