Toggle light / dark theme

In a recent study published in The Lancet Diabetes Endocrinology, researchers evaluate the effects of glucagon-like peptide-1 (GLP-1) receptor agonists on kidney and cardiovascular outcomes.

Improving kidney and cardiovascular outcomes

Non-communicable diseases account for nearly 70% of global deaths, with diabetes and chronic kidney disease (CKD) among the top causes.

A research team affiliated with UNIST has unveiled an ultra-strong adhesive patch platform that adheres effectively to rough skin surfaces and shows remarkable motion adaptiveness during dynamic body movements, all while offering irritation-free removal on demand. The key to this technology lies in the surface adaptability inspired by barnacles and armadillo carapaces, which feature a tessellated structure that balances rigidity and flexibility.

The team, led by Professor Hoon Eui Jeong from the Department of Mechanical Engineering and Professor Jae Joon Kim from the Department of Electrical Engineering at UNIST, along with researchers from the National Institute of Ecology (NIE), has introduced a highly adhesive, detachable, and stretchable skin patch, known as the Motion Adaptive Tessellation Patch.

This innovative technology is garnering attention for its potential to facilitate the commercialization of wearable electronic devices, such as health care monitoring systems and transdermal drug delivery systems. The research is published in the journal Advanced Materials.

Vanderbilt University Medical Center-led research reveals subtle changes in the visual pathways of individuals with chronic mild traumatic brain injury (TBI), even when standard eye examinations show no abnormalities. These findings include structural and functional deficits despite participants showing normal visual acuity during clinical examination.

Mild TBI accounts for approximately 3 million cases in the U.S. each year. Up to 85% of TBI patients, regardless of injury severity, report such as , blurred vision, or difficulty reading. Persistent symptoms including memory problems, irritability, or slowed thinking often impact quality of life. Despite these symptoms, many individuals display no abnormalities during routine clinical evaluations such as fundus examinations.

In a case-control study, “Primary Visual Pathway Changes in Individuals With Chronic Mild Traumatic Brain Injury,” published in JAMA Ophthalmology, researchers reported that 78% of participants with mild TBI exhibited visual deficits when evaluated with a comprehensive battery of tests.

In a recent study published in the journal Cell, researchers investigate the role of fibroblastic reticular cells (FRCs) in creating T-cell-supportive niches within lung cancer tumors. The study findings elucidate how these specialized cells contribute to immune defenses by forming interconnected environments that facilitate T-cell activity, potentially enhancing anti-tumor immunity in non-small cell lung cancer (NSCLC).

What are FRCs?

The ability of the immune system to fight cancer relies on coordinated interactions between various immune cells and their specialized microenvironments.

A new study reveals that metformin, a widely prescribed diabetes medication, can significantly improve health parameters in aged male cynomolgus monkeys — possibly by slowing the aging process. The findings represent an important step toward understanding how pharmaceutical interventions might, in the future, extend the healthspan and delay age-related diseases in humans.

Science and Technology: This was previously thought to be impossible:

This was previously thought to be impossible:


Scientists were astonished to find that recirculating a cocktail of preserving agents through a severed pig’s head caused the animal’s brain to show signs of life.

As New Scientist reports, basic cellular functions were restored in the dismembered brain — something that was previously thought impossible following the cessation of blood flow.

While the pig brain wasn’t exactly oinking at the farm after the treatment, in scientifically significant ways it was seemingly brought back from the brink of death — a ghoulish experiment that could have implications for future efforts to reanimate a dead human brain as well.

A study published in the November issue of Redox Biology has found that adding intravenous, high-dose vitamin C to a chemotherapy regimen doubled the survival of patients with late-stage, metastatic pancreatic cancer from eight months to 16 months.

“This is a deadly disease with very poor outcomes for patients. The median survival is eight months with treatment, probably less without treatment, and the five-year survival is tiny. When we started the trial, we thought it would be a success if we got to 12 months survival, but we doubled overall survival to 16 months. The results were so strong in showing the benefit of this therapy for patient survival that we were able to stop the trial early,” explains Joseph J. Cullen, MD, FACS, a professor of Surgery and Radiation Oncology at the University of Iowa, in a statement to StudyFinds.

The study consisted of 34 patients with stage 4 pancreatic cancer who were randomized to two groups. One group received standard chemotherapy (gemcitabine and nab -paclitaxel). The other group received the same chemotherapy plus intravenous infusions of 75 grams of vitamin C three times a week.

Although it is widely recognized that sleep boosts cognitive performance, the neural mechanisms underlying this effect—especially those associated with non-rapid eye movement (NREM) sleep—are still not well understood.

A new study by a team of researchers at Rice University and Houston Methodist’s Center for Neural Systems Restoration and Weill Cornell Medical College, coordinated by Rice’s Valentin Dragoi, has nonetheless uncovered a key mechanism by which sleep enhances neuronal and behavioral performance, potentially changing our fundamental understanding of how sleep boosts brainpower.

The research, published in Science, reveals how NREM sleep — the lighter sleep one experiences when taking a nap, for example — fosters brain synchronization and enhances information encoding, shedding new light on this sleep stage. The researchers replicated these effects through invasive stimulation, suggesting promising possibilities for future neuromodulation therapies in humans. The implications of this discovery potentially pave the way for innovative treatments for sleep disorders and even methods to enhance cognitive and behavioral performance.