Toggle light / dark theme

Ribonucleic acid (RNA) is a vital biological molecule that plays a significant role in the genetics of organisms and is essential to the origin and evolution of life. Structurally similar to DNA, RNA carries out various biological functions, largely determined by its spatial conformation, i.e. the way the molecule folds in on itself.

Now, a paper published in the journal Proceedings of the National Academy of Sciences (PNAS) describes for the first time how the process of RNA folding at low temperatures may open up a novel perspective on primordial biochemistry and the evolution of life on the planet.

The study is led by Professor Fèlix Ritort, from the Faculty of Physics and the Institute of Nanoscience and Nanotechnology (IN2UB) of the University of Barcelona, and is also signed by UB experts Paolo Rissone, Aurélien Severino, and Isabel Pastor.

Last month, a team from North Carolina State University and Johns Hopkins University found a workaround. They embedded DNA molecules, encoding multiple images, into a branched gel-like structure resembling a brain cell.

Dubbed “dendricolloids,” the structures stored DNA files far better than those freeze-dried alone. DNA within dendricolloids can be repeatedly dried and rehydrated over roughly 170 times without damaging stored data. According to one estimate, each DNA strand could last over two million years at normal freezer temperatures.

Unlike previous DNA computers, the data can be erased and replaced like memory on classical computers to solve multiple problems—including a simple chess game and sudoku.

The FDA approved amivantamab-vmjw in combination with standard chemotherapy for the treatment of certain adults with non-small cell lung cancer, according to the agent’s manufacturer.

The indication applies to adults with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or L858R substitution mutations whose disease progressed on or following treatment with an EGFR tyrosine kinase inhibitor.

Amivantamab-vmjw (Rybrevant, Janssen) is an EGFR and mesenchymal epithelial transition (MET) factor bispecific antibody that targets activating and resistant EGFR and MET mutations and amplifications.

Four years after being functionally cured of sickle cell disease with a CRISPR gene-editing therapy, Jimi Olaghere has set a new world record for patients with this chronic and deadly disease.

Olaghere, a 39-year-old business owner from Atlanta, became the world’s first patient with sickle cell disease to reach the summit of Kilimanjaro at 7:30 am Tanzania time on Sept. 16. It’s the highest peak in Africa at 19,341 feet above sea level.

Summery:

(


Mousavi, S., Seyedmirzaei, H., Shahrokhi Nejad, S. et al. Sci Rep 14, 21,936 (2024). https://doi.org/10.1038/s41598-024-73277-z.

Download citation.