Toggle light / dark theme

The Adaptive Immunity and Immunoregulation Section (AIIS) in the Laboratory of Allergic Diseases at #NIAID is seeking an exceptional candidate for a postdoctoral fellowship position.


The National Institute of Allergy and Infectious Diseases (NIAID), one of the largest institutes in the National Institutes of Health (NIH), and part of the Department of Health and Human Services (HHS), conducts and supports basic and applied research to better understand, treat, and ultimately prevent infectious, immunologic, and allergic diseases.

A postdoctoral fellowship position is available immediately in the Adaptive Immunity and Immunoregulation Section (AIIS) within the Laboratory of Allergic Diseases, NIAID. AIIS seeks highly motivated and collaborative candidates with a strong publication record who are capable of independent reasoning and excited about learning new technologies.

AIIS aims to define the cellular and molecular mechanisms controlling the balance between protective and pathogenic adaptive immune responses to allergens and pathogens. With a particular focus on memory T and B cells and T follicular helper (Tfh) cells, the lab utilizes state-of-the-art cellular and molecular approaches, including in vivo models of infection and allergy, multi-color flow cytometry, adoptive transfer experiments, cell fate tracking experiments, bone marrow chimeras, parabiosis surgery, imaging, conditional knockout and transgenic models, RNA-Seq, and single-cell technologies to characterize memory B-and T-cell responses in different models of food and respiratory allergens and infections.

Thanks to CRISPR, medical specialists will soon have unprecedented control over how they treat and prevent some of the most challenging genetic disorders and diseases.

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a Nobel Prize-winning gene-editing tool, already widely used by scientists to cut and modify DNA sequences to turn genes on and off or insert new DNA that can correct abnormalities. CRISPR uses an enzyme known as Cas9 to cut and alter DNA.

Engineers at the USC Alfred E. Mann Department of Biomedical Engineering have now developed an update to the tool that will allow CRISPR technology to be even more powerful with the help of focused ultrasound.

Researchers have suspected for some time that the link between our gut and brain plays a role in the development of Parkinson’s disease.

A recent study identified gut microbes likely to be involved and linked them with decreased riboflavin (vitamin B2) and biotin (vitamin B7), pointing the way to an unexpectedly simple treatment that may help: B vitamins.

“Supplementation of riboflavin and/or biotin is likely to be beneficial in a subset of Parkinson’s disease patients, in which gut dysbiosis plays pivotal roles,” Nagoya University medical researcher Hiroshi Nishiwaki and colleagues write in their paper published in May.

Specially packaged DNA secreted by tumor cells can trigger an immune response that inhibits the metastatic spread of the tumor to the liver, according to a study led by researchers at Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and Korea’s Yonsei University. The discovery improves the scientific understanding of cancer progression and anticancer immunity, and could yield new clinical tools for assessing and reducing metastasis risk.

In the study, reported Dec. 3 in Nature Cancer, the researchers examined cancer cells’ secretion of short stretches of DNA packaged on tiny capsules called extracellular vesicles (EVs). All cells use EVs to secrete proteins, DNA and other molecules, and tumor cells are particularly active EV secreters.

The biological functions of these EV-packaged molecules are still being explored, but in this case, the researchers discovered that in various cancer types, EV-DNA secreted by tumor cells works as a “danger” signal that activates an anti-tumor response in the liver, reducing the risk of liver metastasis.