Toggle light / dark theme

Staking a Claim on the Steak of Tomorrow: 3D Printing Tech is Making ‘Meat’

Opinions: Give your opinions in the comments section.

3D printed lab meat, and plant based meats will be more widespread in our future. Would you eat stem cell 3D printed lab meat or plant based meat? Why or why not? What are the differences between natural vs unnatural. Growing up in Texas I know most Texans frown on it, as BBQ is a religion. Is 3D printing meat sustainable\.


Whether it comes from a plant or the cells of an animal, it’s becoming increasingly clear that the meat of the future will probably not be coming from the flesh of slaughtered animals. Instead, whether made from plants or cells, it will be formed into ‘meat’ by a 3D printer. In September of 2021, a Japanese team of researchers at the University of Osaka announced that they had 3D printed Wagyu beef. Beef connoisseurs will recognize the name; Wagyu beef is prized (and suitably priced) for its flavor and fat marbling. Legends abound about the cows such beef derives from, how they are allegedly coddled and massaged, fed a special diet that includes beer — but much of those tales are either exaggerated or pure urban legend. As Joe Heitzeberg, the co-founder and CEO of Crowd Cow explains, There are four breeds native to Japan. Of those four breeds, one of the breeds is genetically unique. It has a genetic predisposition to create this crazy marbling of fat on the inside of muscle tissue. No other livestock does that. The researchers at the University of Osaka used two different types of stem cells from Wagyu cows to create cultured meat, growing living animal cells onto some type of matrix where they are then incubated and grown into animal tissue that has never been part of a living animal. There are currently no reports on the taste of the cultured Wagyu beef but we can assume it’s ‘good’ and given a little time, the technology should be able to produce excellent Wagyu cultured meat — at what price, however, is another big question mark. But there’s another simpler solution that could be a better meat replacement than cultured meat, as even meat grown from stem cells still contains cholesterol and some of the negative health concerns associated with animal protein. Plant-based imitation meat is also being created with 3D printers, and the results are surprising even hardcore meat lovers.

In November 2021, the UK’s Guardian newspaper highlighted the 3D steak produced by Israeli startup Redefine Meat after celebrity chef Marco Pierre White invited chefs, investors connoisseurs, and former winners of the MasterChef cooking show to taste it. This vegan 3D steak made with a 3D printer has a secret formula, but according to the Guardian, it includes soy, pea protein, and other vegetables such as beetroot, chickpeas, and coconut fat. But the reason it’s winning over meat lovers is the unique idea of printing it in layers. With a layer of ‘alternative fat’ made from plant-based materials, and then a layer of ‘alternative muscle’ also made from plants, the imitation meat no longer has a single texture — but like real meat — contains different flavors and textures in different areas. According to the experts gathered by celebrity Chef White, this ‘alt-meat’ is by far the closest synthetic approximation ever.

First pig-to-human heart transplant: what can scientists learn?

In a first, U.S. surgeons transplant pig heart into human patient.


Unusual opportunity

Last week’s procedure marks the first time that a pig organ has been transplanted into a human who has a chance to survive and recover. In 2021, surgeons at New York University Langone Health transplanted kidneys from the same line of genetically modified pigs into two legally dead people with no discernible brain function. The organs were not rejected, and functioned normally while the deceased recipients were sustained on ventilators.

Aside from that, most research has so far taken place in non-human primates. But researchers hope that the 7 January operation will further kick-start clinical xenotransplantation and help to push it through myriad ethical and regulatory issues.

Quadriplegic man, using two robot arms, can feed himself again

Using a brain computer interface, the man cut and ate food with thought-controlled robotic hands. A man paralyzed from the neck down has used two robot arms to cut food and serve himself — a big step in the field of mind-controlled prosthetics.

Robert “Buz” Chmielewski, age 49, has barely been able to move his arms since a surfing accident paralyzed him as a teenager. But in January of 2019, he got renewed hope, when doctors implanted two sets of electrodes in his brain, one in each hemisphere.

The goal was that this brain computer interface would help Chmielewski regain some sensation in his hands, enable him to mentally control two prosthetic arms, and even feel what he is touching. man paralyzed from the neck down has used two robot arms to cut food and serve himself — a big step in the field of mind-controlled prosthetics.

These brain implants can predict an epileptic seizure days in advance

Scientists have been trying to find ways to predict an epileptic seizure for decades, with little success. They are almost always unpredictable. The best techniques we have now — machine learning and self-awareness — give us only minutes notice ahead of the seizure.

Now, for the first time, a study has shown that brain activity could be used to forecast the onset of epileptic seizures several days in advance.

A New Hope

A team of researchers looked into data from brain implants designed to monitor and prevent seizures. Buried in the data, they found patterns of brain activity that predicted seizure risk a day or more in advance. The researchers say this could be used to create an epileptic seizure forecasting tool — giving new hope to patients with epilepsy.

The next phase of remote work will be even more disruptive

But still there are many areas such as carpenter, electrician e.t.c where remote work is not possible.


As jarring as the transition to remote work was during the coronavirus pandemic, it was modest compared to what’s coming next, says Adam Ozimek, a labor economist at the freelancing platform Upwork. He argues that the next phase of remote work will transform economies, as more companies revise their policies to accommodate employees who have permanently shifted to working remotely, and more workers move to places they’ve always wanted to live but couldn’t.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Japanese university uses iPS cells in first treatment of spinal cord injury

About 2 million cells are transplanted into each patient in the treatment. They were created from iPS cells stored at Kyoto University in western Japan, according to Keio University.

In the future, the university plans to increase the number of cells to be transplanted in order to enhance the effectiveness of the treatment.

Some 5,000 people sustain spinal cord injuries every year in Japan and the number of people living with spinal cord injuries is said to exceed 150,000.

Humans Might Need Artificial Gravity for Space Travel

Despite the fact that floating around in space looks like a certified blast, it’s not something the human body is optimized for. In order to make these trips possible, scientists are going to have to figure out how to mimic Earth’s gravity in space.
» Subscribe to Seeker! http://bit.ly/subscribeseeker.
» Watch more Elements! http://bit.ly/ElementsPlaylist.
» Visit our shop at http://shop.seeker.com.
» Sign Up for Seeker’s Newsletter! https://www.seeker.com/newsletters.

We evolved with gravity constantly pulling on us at a rate of about 9.8 m/s2, or 1 g. Our bodies are built in a way that takes that into account. Our rigid bones can hold us up, our cardiovascular system can pump blood to and from our extremities, our vestibular system in our ears keeps us balanced, and so on. Our bodies are also good at adapting to our needs, which means when you take gravity away the body starts to change. Bones lose mineral density, hearts weaken, and the vestibular system shuts off because suddenly there is no “up” anymore. So long as the body stays in space these changes aren’t really a problem, but coming back to Earth and readapting to 1 g can be painful and disorienting.

To make the transition to Earth easier, astronauts on the ISS have to spend two and a half hours every day doing aerobic and resistive exercise. It takes a lot of valuable time and still doesn’t prevent all bodily changes, so maybe some sort of artificial gravity could be a better solution. The only practical way to recreate the effects of gravity would be by using centrifugal force, aka spinning. If you’ve ever clung for dear life to one of those whirligigs on a playground you know what I’m talking about. If astronauts could somehow be spun around that might mimic gravity enough to keep their bodies from changing too drastically. There have actually been several proposals on how to leverage centrifugal force, and each of them has its downsides.

One of them is a staple of sci-fi: a spacecraft with a gigantic rotating section. Inside the astronauts would be pushed towards the outermost wall and that would become the “floor”, so to speak, while the rest of the station would remain stationary and in microgravity. But a spacecraft like this would be really complex and expensive to build. Another design is a long spacecraft that twirls like a baton, creating Earth-like acceleration at either end. If the craft were about a kilometer long it would only need to rotate once or twice a minute, but a kilometer-long spacecraft would be about 10 times longer than the ISS and an incredible engineering feat.

#seeker #science #gravity #nasa #space.

Why does China want to build a kilometre-long spacecraft? And is it even possible?

How This Electricity-Free Fridge Saved An Indian Ceramics Factory | Big Business

In 2001, the founder of Mitticool ceramics learned many of his customers in India don’t have regular access to electricity. So he invented a fridge made out of clay. It keeps food 8 degrees cooler than the outside air, but it doesn’t need any electricity to run. And while other ceramics companies in the region shut down, Mitticool is thriving thanks to the success of the powerless, eco-friendly fridge.

MORE BIG BUSINESS VIDEOS:
How Millions Of Hearing AIDS Are Made In America | Big Business.
https://www.youtube.com/watch?v=Eri08ZZ1Kmo.
How This 8,000-Pound Crystal Went From Mine To Smithsonian | Big Business.

How This 8,000-Pound Crystal Went From Mine To Smithsonian | Big Business.
https://www.youtube.com/watch?v=Z9NQ6VEciFk.

#BusinessInsider #Ceramics #Mitticool.

Business Insider tells you all you need to know about business, finance, tech, retail, and more.

Visit us at: https://www.businessinsider.com.
Subscribe: https://www.youtube.com/user/businessinsider.
BI on Facebook: https://read.bi/2xOcEcj.
BI on Instagram: https://read.bi/2Q2D29T
BI on Twitter: https://read.bi/2xCnzGF
BI on Snapchat: https://www.snapchat.com/discover/Business_Insider/5319643143
Boot Camp on Snapchat: https://www.snapchat.com/discover/Boot_Camp/3383377771

How 15,000 Ceramics Are Made A Day In Gujarat | Big Business.

Pfizer seeks approval for oral COVID-19 pill in Japan

Pfizer Japan Inc. said Friday it has applied to the health ministry for approval of its COVID-19 pill which, if granted, would make it the second oral drug for mild coronavirus cases available in the country.

The new drug application for Paxlovid, a combination of the antiviral drugs nirmatrelvir and ritonavir, comes as Japan is battling its sixth surge of COVID-19 cases amid a spread of the omicron variant, with the country already agreeing to procure enough of the drug for 2 million people.