Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1406

Sep 2, 2020

FDA Approves New HIV Treatment for Patients With Limited Treatment Options

Posted by in category: biotech/medical

Cross-posted from U.S. Food and Drug Administration

[On July 2, 2020], the U.S. Food and Drug Administration approved Rukobia (fostemsavir), a new type of antiretroviral medication for adults living with HIV who have tried multiple HIV medications and whose HIV infection cannot be successfully treated with other therapies because of resistance, intolerance or safety considerations.

“This approval marks a new class of antiretroviral medications that may benefit patients who have run out of HIV treatment options,” said Jeff Murray, M.D., deputy director of the Division of Antivirals in the FDA’s Center for Drug Evaluation and Research. “The availability of new classes of antiretroviral drugs is critical for heavily treatment-experienced patients living with multidrug resistant HIV infection—helping people living with hard-to-treat HIV who are at greater risk for HIV-related complications, to potentially live longer, healthier lives.”

Sep 2, 2020

New genetic method of using CRISPR to eliminate COVID-19 virus genomes in cells

Posted by in categories: bioengineering, biotech/medical, genetics

Bioengineering.


There is currently no vaccine or cure towards COVID-19. It is predicted the development of a safe and effective vaccine to prevent COVID-19 will take 12 to 18 months, by which time hundreds of thousands to millions of people may have been infected. With a rapidly growing number of cases and deaths around the world, this emerging threat requires a nimble and targeted means of protection.

Could CRISPR be the next virus killer? To address this global pandemic challenge, we are developing a genetic vaccine that can be used rapidly in healthy and patients to greatly reduce the coronavirus spreading. We developed a safe and effective CRISPR system to precisely target, cut and destroy COVID-19 virus and its genome, which stops coronavirus from infecting the human lung.

Continue reading “New genetic method of using CRISPR to eliminate COVID-19 virus genomes in cells” »

Sep 2, 2020

Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial

Posted by in category: biotech/medical

Findings In this bayesian randomized clinical trial that included 403 patients and was stopped early after results from another trial were released, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority, respectively, with regard to the odds of improvement in organ support–free days within 21 days.


Objective To determine whether hydrocortisone improves outcome for patients with severe COVID-19.

Design, Setting, and Participants An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020.

Continue reading “Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial” »

Sep 2, 2020

CDC tells states: Be ready to distribute coronavirus vaccines on Nov. 1

Posted by in categories: biotech/medical, government, health

Providence, R.I. — The federal government has told states to prepare for a coronavirus vaccine to be ready to distribute by Nov. 1.

The timeline raised concern among public health experts about an “October surprise” — a vaccine approval driven by political considerations ahead of a presidential election, rather than science.

In a letter to governors dated Aug. 27, Robert Redfield, director of the U.S. Centers for Disease Control and Prevention, said states “in the near future” will receive permit applications from McKesson Corp., which has contracted with CDC to distribute vaccines to places including state and local health departments and hospitals.

Sep 2, 2020

Robotic medicine may be the weapon the world needs to combat the coronavirus

Posted by in categories: biotech/medical, health, robotics/AI

Medical experts say coronavirus COVID-19 and Ebola outbreaks show that robotic medicine can help fight infectious disease, but the goal needs to be applications in everyday health care.

Sep 2, 2020

How Automation Can Help Fast Track a Vaccine

Posted by in categories: biotech/medical, robotics/AI

As the coronavirus spreads around the world, the urgency of being able to scale up a vaccine is even more critical.

Delays in production can occur at any point in time, from timely receipt and testing of raw materials, to characterization of the drug substance, to quality testing and release.

Automation technologies can help both speed up the manufacturing process and make the process safer and more efficient by reducing manual errors.

Sep 2, 2020

Coronavirus: Spain to use artificial intelligence to automate testing

Posted by in categories: biotech/medical, robotics/AI

Authorities in Spain have invested in robots to automate the testing of citizens for the Covid-19 coronavirus.

Sep 2, 2020

The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut

Posted by in category: biotech/medical

At least 32 studies to date have looked at the human gut virome but with limited consistency. Gregory and Zablocki et al. curate and aggregate these data to provide a systematic virome database; use it to assess study biases, global ecological patterns; and show how viromes evolve throughout the human lifespan.

Sep 2, 2020

Generation of Heart Organoids Modeling Early Human Cardiac Development Under Defined Conditions

Posted by in categories: biotech/medical, chemistry, health

Cardiovascular-related disorders are a significant worldwide health problem. Cardiovascular disease (CVD) is the leading cause of death in developed countries, making up a third of the mortality rate in the US1. Congenital heart defects (CHD) affect ∼1% of all live births2, making it the most common birth defect in humans. Current technologies provide some insight into how these disorders originate but are limited in their ability to provide a complete overview of disease pathogenesis and progression due to their lack of physiological complexity. There is a pressing need to develop more faithful organ-like platforms recapitulating complex in vivo phenotypes to study human development and disease in vitro. Here, we report the most faithful in vitro organoid model of human cardiovascular development to date using human pluripotent stem cells (hPSCs). Our protocol is highly efficient, scalable, shows high reproducibility and is compatible with high-throughput approaches. Furthermore, our hPSC-based heart organoids (hHOs) showed very high similarity to human fetal hearts, both morphologically and in cell-type complexity. hHOs were differentiated using a two-step manipulation of Wnt signaling using chemical inhibitors and growth factors in completely defined media and culture conditions. Organoids were successfully derived from multiple independent hPSCs lines with very similar efficiency. hHOs started beating at ∼6 days, were mostly spherical and grew up to ∼1 mm in diameter by day 15 of differentiation. hHOs developed sophisticated, interconnected internal chambers and confocal analysis for cardiac markers revealed the presence of all major cardiac lineages, including cardiomyocytes (TNNT2+), epicardial cells (WT1+, TJP+), cardiac fibroblasts (THY1+, VIM+), endothelial cells (PECAM1+), and endocardial cells (NFATC1+). Morphologically, hHOs developed well-defined epicardial and adjacent myocardial regions and presented a distinct vascular plexus as well as endocardial-lined microchambers. RNA-seq time-course analysis of hHOs, monolayer differentiated iPSCs and fetal human hearts revealed that hHOs recapitulate human fetal heart tissue development better than previously described differentiation protocols3,4. hHOs allow higher-order interaction of distinct heart tissues for the first time and display biologically relevant physical and topographical 3D cues that closely resemble the human fetal heart. Our model constitutes a powerful novel tool for discovery and translational studies in human cardiac development and disease.

The authors have declared no competing interest.

Sep 2, 2020

Mechano-bactericidal actions of nanostructured surfaces

Posted by in categories: biotech/medical, health, nanotechnology

Antibiotic resistance is a global human health threat, causing routine treatments of bacterial infections to become increasingly difficult. The problem is exacerbated by biofilm formation by bacterial pathogens on the surfaces of indwelling medical and dental devices that facilitate high levels of tolerance to antibiotics. The development of new antibacterial nanostructured surfaces shows excellent prospects for application in medicine as next-generation biomaterials. The physico-mechanical interactions between these nanostructured surfaces and bacteria lead to bacterial killing or prevention of bacterial attachment and subsequent biofilm formation, and thus are promising in circumventing bacterial infections. This Review explores the impact of surface roughness on the nanoscale in preventing bacterial colonization of synthetic materials and categorizes the different mechanisms by which various surface nanopatterns exert the necessary physico-mechanical forces on the bacterial cell membrane that will ultimately result in cell death.