Toggle light / dark theme

Novel study designed to correct genetic abnormalities of red blood cells.


Cleveland Clinic researchers are enrolling patients in a clinical trial that aims to work toward a cure for sickle cell disease, by changing the patient’s genetics. Sickle cell disease, a genetic blood disorder, is a painful and debilitating condition for which there are few approved therapies.

The multicenter study will evaluate the safety and effectiveness of a single dose of EDIT-301, an experimental one-time gene editing cell therapy that modifies a patient’s own blood-forming stem cells to correct the mutation responsible for sickle cell disease.

During the study patients’ stem cells are collected for gene editing in a laboratory. Patients then are treated with chemotherapy to destroy remaining bone marrow to make room for the repaired cells which are infused back into the body. The study will initially enroll 40 adult patients ages 18 to 50 with severe sickle cell disease, with the possibility of expansion to include adolescents. Patients will be monitored closely after treatment for up to two years.

The U.S. Space Development Agency has five satellites riding on SpaceX’s Transporter-2 mission scheduled to launch June 25.


WASHINGTON — The U.S. Space Development Agency has five satellites riding on SpaceX’s Transporter-2 rideshare mission scheduled to launch June 25.

“There’s nothing in the space business that gets your blood pumping like the idea of a launch, especially if you’ve got multiple satellites,” a senior Space Development Agency (SDA) official told reporters June 22. “We’re really excited about what’s going to happen.”

Transporter-2 is expected to carry as many as 88 small satellites from commercial and government customers to a sun synchronous polar orbit. SDA’s five payloads include two pairs of satellites to demonstrate laser communications links, and one to demonstrate how data can be processed and analyzed autonomously aboard a satellite.

Some researchers suspect these bacterial ancestors living within our cells may contribute to a wide range of neurological and psychiatric disorders.

By Diana Kwon.

Long before the earliest animals swam through the water-covered surface of Earth’s ancient past, one of the most important encounters in the history of life took place. A primitive bacterium was engulfed by our oldest ancestor — a solo, free-floating cell. The two fused to form a mutually beneficial relationship that has lasted more than a billion years, with the latter providing a safe, comfortable home and the former becoming a powerhouse, fueling the processes necessary to maintain life.

- Progress, Potential, And Possibilities has had another busy month, with another awesome set of guests from academia, industry, and government, all focused on building a better tomorrow — Please come subscribe and enjoy all our current and future guests — Much more to come! # Health # Longevity # Biotech # SpaceExploration # ArtificialIntelligence # NeuroTechnology # RegenerativeMedicine # Sports # Environment # Sustainability # Food # NationalSecurity # Innovation # Future # Futurism # AnimalWelfare # Equity # IraPastor.

Researchers from the New York University School of Medicine have developed a brain implant designed to detect pain sensations in real-time and deliver bursts of pain-relieving stimulation. The device is still deeply experimental but a new proof of concept study demonstrates it working effectively in rodent models.

In the world of brain implants the chasm between science fiction and reality is still quite vast. Apart from some exciting human tests showing paralyzed individuals with implants regaining a sense of touch or controlling computers with their mind, most research in the field is still nascent.

Animal tests have demonstrated incremental technological advances, such as pigs broadcasting neural activity or monkeys playing Pong. Now, an interface that can detect pain signals in one part of the brain and immediately respond with stimulation to another part of the brain targeted to relieve that pain has been developed.

Biologists in the UK and Austria have discovered 71 new imprinted genes in the mouse genome.

Biologists at the Universities of Bath and Vienna have discovered 71 new ‘imprinted’ genes in the mouse genome, a finding that takes them a step closer to unraveling some of the mysteries of epigenetics – an area of science that describes how genes are switched on (and off) in different cells at different stages in development and adulthood.

To understand the importance of imprinted genes to inheritance, we need to step back and ask how inheritance works in general. Most of the thirty trillion cells in a person’s body contain genes that come from both their mother and father, with each parent contributing one version of each gene. The unique combination of genes goes part of the way to making an individual unique. Usually, each gene in a pair is equally active or inactive in a given cell. This is not the case for imprinted genes. These genes – which make up less than one percent of the total of 20000+ genes – tend to be more active (sometimes much more active) in one parental version than the other.

China is seeing a high-tech greenhouse boom as food supply disruptions sparked by coronavirus lockdowns accelerated the development of modern farming techniques.


SHANGHAI, June 4 (Reuters) — At Chongming Island just outside Shanghai, China’s most populous city, workers collect and pack tomatoes and cucumbers at a glass greenhouse operated by Dutch company FoodVentures, which harvested their first batch of produce at the site in May.

The facility is one of dozens sprouting up on the outskirts of China’s megacities that utilise high-end technology to manage irrigation, temperature and lighting systems to grow vegetables within easy reach of a large and affluent consumer base.

“There is a trend towards more sustainable and professional supply,” said FoodVentures director Dirk Aleven.