Toggle light / dark theme

A new way of producing coherent light in the ultra-violet spectral region, which points the way to developing brilliant table-top x-ray sources, has been produced in research led at the University of Strathclyde.

The scientists have developed a type of ultra-short wavelength coherent light source that does not require laser action to produce coherence. Common electron-beam based light sources, known as fourth-generation light sources, are based on the free-electron laser (FEL), which uses an undulator to convert electron beam energy into X-rays.

Coherent light sources are powerful tools that enable research in many areas of medicine, biology, material sciences, chemistry, and physics.

Unlike DeepMind, the UW Medicine team’s method, which they dubbed RoseTTAFold, is freely available. Scientists from around the world are now using it to build protein models to accelerate their own research. Since July, the program has been downloaded from GitHub by over 140 independent research teams.


Accurate protein structure prediction now accessible to all.

Scientists have waited months for access to highly accurate protein structure prediction since DeepMind presented remarkable progress in this area at the 2020 Critical Assessment of Structure Prediction, or CASP14, conference. The wait is now over.

Researchers at the Institute for Protein Design at the University of Washington School of Medicine in Seattle have largely recreated the performance achieved by DeepMind on this important task. These results were published online by the journal Science on July 15, 2021.

To date, there are no effective antidotes against most virus infections. An interdisciplinary research team at the Technical University of Munich (TUM) has now developed a new approach: they engulf and neutralize viruses with nano-capsules tailored from genetic material using the DNA origami method. The strategy has already been tested against hepatitis and adeno-associated viruses in cell cultures. It may also prove successful against coronaviruses.

There are antibiotics against dangerous bacteria, but few antidotes to treat acute viral infections. Some infections can be prevented by vaccination but developing new vaccines is a long and laborious process.

Now an interdisciplinary research team from the Technical University of Munich, the Helmholtz Zentrum München, and the Brandeis University (USA) is proposing a novel strategy for the treatment of acute viral infections: The team has developed nanostructures made of DNA, the substance that makes up our genetic material, that can trap viruses and render them harmless.

Now just need to go to rat monkey human.


Researchers at the University of Chicago and the U.S. Department of Energy’s (DOE) Argonne National Laboratory have imaged an entire mouse brain across five orders of magnitude of resolution, a step which researchers say will better connect existing imaging approaches and uncover new details about the structure of the brain.

The advance, which was published on June 9 in NeuroImage, will allow scientists to connect biomarkers at the microscopic and macroscopic level. It leveraged existing advanced X-ray microscopy techniques at the Advanced Photon Source (APS), a DOE Office of Science User Facility at Argonne, to bridge the gap between MRI and electron microscopy imaging, providing a viable pipeline for multiscale whole brain imaging within the same brain.

“Argonne had this extremely powerful X-ray microscope, and it hadn’t been used for brain mapping yet, so we decided to try it out.” — Assistant Professor Bobby Kasthuri

Argonne researchers across the laboratory complex are using AI to design better materials and processes, safeguard the nation’s power grid, accelerate medical treatments, automate traditional research, and drive discovery.

Armed with some of the world’s brightest minds and best computing resources, Argonne is at the forefront of AI research, playing an integral role in applying innovative AI methods to solve problems and change lives.

He has not been able to speak since 2003, when he was paralyzed at age 20 by a severe stroke after a terrible car crash.

Now, in a scientific milestone, researchers have tapped into the speech areas of his brain — allowing him to produce comprehensible words and sentences simply by trying to say them. When the man, known by his nickname, Pancho, tries to speak, electrodes implanted in his brain transmit signals to a computer that displays his intended words on the screen.

His first recognizable sentence, researchers said, was, “My family is outside.”

What are Soft Robots?

What are Soft Robots?Soft robots are largely made of readily malleable matter, such as fluids, gels, and elastomers, which may match specific materials in a process known as compliance matching. The idea of compliance matching states that materials that make contact with one other should have similar mechanical stiffness in order to transfer internal load uniformly and reduce interfacial tensile stress. This principle, nevertheless, does not applicable to rigid robots (E=109Pa) engaging with soft materials (E=102-106Pa), causing serious damage or mechanical immobility. These kinds of interactions with soft materials are common, for example, with natural skin, muscular tissue, and sensitive interior organs, but also with creatures, artificial predictor variables of biological functions, and so on. Because of this huge disparity in mechanical compliance, it’s simple to assume that stiff robots are unsuitable, if not hazardous, for close human engagement.

Investigating the relationship between diet, gut bacteria and systemic inflammation, a team of Stanford University researchers has found just a few weeks of following a diet rich in fermented foods can lead to improvements in microbiome diversity and reductions in inflammatory biomarkers.

The new research pitted a high-fiber diet against a diet with lots of fermented food. Thirty-six healthy adults were recruited and randomly assigned one of the two diets for 10 weeks.

“We wanted to conduct a proof-of-concept study that could test whether microbiota-targeted food could be an avenue for combatting the overwhelming rise in chronic inflammatory diseases,” explains Christopher Gardner, co-senior author on the new study.

Investing in the convergence of bioelectrics & biologics for regeneration & healing — howard J. leonhardt, founder, leonhardt ventures.


Howard Leonhardt is the Founder of Leonhardt Ventures, the world’s first Innovation Accelerator focused on the convergence of bioelectrics & biologics for organ regeneration and tissue healing.

Howard is an accomplished inventor and serial entrepreneur, with 21 U.S. patents, over 100 patent claims for products for treating cardiovascular disease, and has over 40 new patent claims pending. His TALENT (Taheri-Leonhardt) stent graft, developed in the early 1990′s, holds a leading world market share for repairing aortic aneurysms without surgery.

NAD Coenzymes, Metabolic Stress, And Novel Preventative And Therapeutic Interventions — Dr. Charles Brenner, Ph.D., City of Hope.


Dr. Charles Brenner Ph.D. is the Alfred E Mann Family Foundation Chair in Diabetes and Cancer Metabolism, and Professor and Chair of the Department of Diabetes & Cancer Metabolism, at the City of Hope Comprehensive Cancer Center (https://www.cityofhope.org/faculty/charles-brenner).

With his Ph.D. in Cancer Biology from Stanford University, Dr. Brenner’s laboratory focuses on disturbances in nicotinamide adenine dinucleotide (NAD), the central catalyst of metabolism, in diseases and conditions of metabolic stress (https://www.cityofhope.org/charles-brenner-lab).