Toggle light / dark theme

Why biology could be the future of computing and engineering

Australian researchers are turning to nature for the next computing revolution, harnessing living cells and biological systems as potential replacements for traditional silicon chips. A new paper from Macquarie University scientists outlines how engineered biological systems could solve limitations in traditional computing, as international competition accelerates the development of “semisynbio” technologies.

Living computers, organs-on-a-chip, data storage in DNA and biosecurity networks that detect threats before they spread—these aren’t science fiction concepts but emerging realities. A team from Macquarie University and the ARC Center of Excellence in Synthetic Biology (COESB) has explored this convergence of biological and digital technologies in a Perspective paper published in Nature Communications.

The Macquarie University authors—Professor Isak Pretorius, Professor Ian Paulsen and Dr. Thom Dixon (who are also affiliated with the ARC Center of Excellence in Synthetic Biology), Professor Daniel Johnson and Professor Michael Boers—draw on decades of combined experience to explain why harnessing bio-innovation can proactively shape the future of computing .

A Quest for a Cure: AI Drug Design with Isomorphic Labs

In this episode, host Hannah Fry is joined by Max Jaderberg and Rebecca Paul of Isomorphic Labs to explore the future of drug discovery in the age of AI. They discuss how new technology, particularly AlphaFold 3, is revolutionizing the field by predicting the structure of life’s molecules, paving the way for faster and more efficient drug discovery.

They dig into the immense complexities of designing new drugs: How do you find the right molecular key for the right biological lock? How can AI help scientists understand disease better and overcome challenges like drug toxicity? And what about the diseases that are currently considered “undruggable”? Finally, they explore the ultimate impact of this technology, from the future of personalized medicine to the ambitious goal of being able to eventually design treatments for all diseases.

Further reading:

AlphaFold 3: https://www.nature.com/articles/s41586-024-07487-w.
AlphaFold Server: https://alphafoldserver.com/
Isomorphic Labs: https://www.isomorphiclabs.com/
AlphaFold 3 code and weights: https://github.com/google-deepmind/alphafold3

Timecodes:
00:00 Intro.
02:11 AI & Disease.
05:30 AI in Biology.
06:51 Molecules and Proteins.
12:05 AlphaFold 3
14:40 Demo.
16:20 Human-AI collaboration.
24:30 Drug Design Challenges.
39:00 Beyond Animal Models.
44:35 AI Drug Future.
46:30 Outro.

Thanks to everyone who made this possible, including but not limited to:

Breakthrough in search for HIV cure leaves researchers ‘overwhelmed’

A cure for HIV could be a step closer after researchers found a new way to force the virus out of hiding inside human cells.

The virus’s ability to conceal itself inside certain white blood cells has been one of the main challenges for scientists looking for a cure. It means there is a reservoir of the HIV in the body, capable of reactivation, that neither the immune system nor drugs can tackle.

Now researchers from the Peter Doherty Institute for Infection and Immunity in Melbourne, have demonstrated a way to make the virus visible, paving the way to fully clear it from the body.

Non-invasive mechanical stimulation can enhance brain waste clearance

Scientists at the Institute for Basic Science (IBS) have uncovered a non-invasive method to boost the brain’s natural waste drainage system—a discovery that could open new avenues for tackling age-related neurological disorders.

In a study published in Nature, researchers from the IBS Center for Vascular Research, led by Director Koh Gou Young, along with senior researchers Jin Hokyung, Yoon Jin-Hui, and principal researcher Hong Seon Pyo, demonstrate that precisely stimulating the lymphatics under skin on the neck and face can significantly enhance the (CSF)—the liquid that cushions the brain and helps remove —through .

This offers a new approach to clearing brain waste using safe, non-invasive mechanical stimulation, rather than relying on drugs or surgical interventions.

Graphene foam supports lab-grown cartilage for future osteoarthritis treatments

Boise State University researchers have developed a new technique and platform to communicate with cells and help drive them toward cartilage formation. Their work leverages a 3D biocompatible form of carbon known as graphene foam and is featured on the cover of Applied Materials and Interfaces.

In this work, the researchers aim to develop new techniques and materials that can hopefully lead to new treatments for osteoarthritis through . Osteoarthritis is driven by the irreversible degradation of hyaline cartilage in the joints, which eventually leads to pain and disability, with complete joint replacement being the standard clinical treatment. Using custom-designed and 3D-printed bioreactors with electrical feedthroughs, they were able to deliver brief daily electrical impulses to cells being cultured on 3D graphene foam.

The researchers discovered that applying direct to ATDC5 cells adhered to the 3D graphene foam bioscaffolds significantly strengthens their and improves —key metrics for achieving lab-grown cartilage. ATDC5 cells are a murine chondrogenic progenitor cell line well studied as a model for cartilage tissue engineering.

Diagnostic pen converts handwriting into electrical signals to detect Parkinson’s

A team at the University of California, Los Angeles has developed a low-cost diagnostic pen that converts handwriting into electrical signals for early detection of Parkinson’s disease, achieving 96.22% accuracy in a pilot study.

Parkinson’s disease impairs the , leading to tremors, stiffness, and slowed movements that impair fine motor functions such as . Clinical diagnosis today largely relies on subjective observations, which are prone to inconsistency and often inaccessible in . Biomarker-based diagnostics, while objective, remain constrained by cost and technical complexity.

In the study, “Neural network-assisted personalized handwriting analysis for Parkinson’s disease diagnostics,” published in Nature Chemical Engineering, researchers engineered a diagnostic pen to capture real-time motor signals during handwriting and convert them into quantifiable electrical outputs for disease classification.

/* */