Toggle light / dark theme

Materials that change their properties in response to certain stimuli could come to occupy a valuable space in many fields, ranging from robotics, to medical care, to advanced aircraft. A new example of this type of shape-shifting technology is modeled on ancient chain mail armor, enabling it to swiftly switch from flexible to stiff thanks to carefully arranged interlocking particles.

Contact Seller


Message.

Yes this says a 3 year epigenetic clock reversal in just 8 weeks thanks to diet and lifestyle changes. There is a list of supplements too:

Alpha ketoglutarate, vitamin C and vitamin A curcumin, epigallocatechin gallate (EGCG), rosmarinic acid, quercetin, luteolin.


Manipulations to slow biological aging and extend healthspan are of interest given the societal and healthcare costs of our aging population. Herein we report on a randomized controlled clinical trial conducted among 43 healthy adult males between the ages of 50–72. The 8-week treatment program included diet, sleep, exercise and relaxation guidance, and supplemental probiotics and phytonutrients. The control group received no intervention. Genome-wide DNA methylation analysis was conducted on saliva samples using the Illumina Methylation Epic Array and DNAmAge was calculated using the online Horvath DNAmAge clock (2013). The diet and lifestyle treatment was associated with a 3.23 years decrease in DNAmAge compared with controls (p=0.018). DNAmAge of those in the treatment group decreased by an average 1.96 years by the end of the program compared to the same individuals at the beginning with a strong trend towards significance (p=0.066). Changes in blood biomarkers were significant for mean serum 5-methyltetrahydrofolate (+15%, p=0.004) and mean triglycerides (−25%, p=0.009). To our knowledge, this is the first randomized controlled study to suggest that specific diet and lifestyle interventions may reverse Horvath DNAmAge (2013) epigenetic aging in healthy adult males. Larger-scale and longer duration clinical trials are needed to confirm these findings, as well as investigation in other human populations.

Keywords: DNA methylation, epigenetic, aging, lifestyle, biological clock.

🐶 Lifelike & Realistic Pets on Amazon: https://amzn.to/3uegCXk 🐱
🔥 Robot Dog Kit on Amazon: https://amzn.to/3jirOw9
🤖 Robot Dogs that are just like Real Dogs: https://youtu.be/pifs1DE-Ys4

▶ Subscribe: https://bit.ly/3eLtWLS

✨ Instagram: https://www.instagram.com/Robotix_with_Sina.
📌My Amazon Pick: https://www.amazon.com/shop/iloverobotics?tag=lifeboatfound-20.
————————
A company called Tombot thinks it’s come up with a way to improve the quality of life for seniors facing challenges when it comes to being social: a robotic companion dog that behaves and responds like a real pup, but without all the responsibilities of maintaining a living, breathing animal. The company even enlisted the talented folks at the Jim Henson’s Creature Shop to help make the robo-dog look as lifelike as possible. It’s a noble effort, but it also raises lots of questions.

For starters, can robots actually be a good substitute for an animal companion? Replacing people with robots is a massive technological challenge—and one we’re not even close to accomplishing. Every time a multi-million dollar humanoid robot like Boston Dynamics’ ATLAS takes a nasty spill, we’re reminded that they’re nowhere near ready to interact with the average consumer. But robotic animals are a different story. It’s hard not to draw comparisons to a well-trained dog when seeing Boston Dynamics’ SpotMini in action. And even though it still comes with a price tag that soars to hundreds of thousands of dollars, there are robotic pets available on the other end of the affordability spectrum.

I think SENS did this last year but now AlphaFold2 will make it easier and faster.


Hey it’s Han from WrySci HX discussing how breakthroughs in the protein folding problem by AlphaFold 2 from DeepMind could combine with the SENS research foundation’s approach of allotopic mitochondrial gene expression to fight aging damage. More below ↓↓↓

Subscribe! =]

It’s no secret that AI is everywhere, yet it’s not always clear when we’re interacting with it, let alone which specific techniques are at play. But one subset is easy to recognize: If the experience is intelligent and involves photos or videos, or is visual in any way, computer vision is likely working behind the scenes.

Computer vision is a subfield of AI, specifically of machine learning. If AI allows machines to “think,” then computer vision is what allows them to “see.” More technically, it enables machines to recognize, make sense of, and respond to visual information like photos, videos, and other visual inputs.

Over the last few years, computer vision has become a major driver of AI. The technique is used widely in industries like manufacturing, ecommerce, agriculture, automotive, and medicine, to name a few. It powers everything from interactive Snapchat lenses to sports broadcasts, AR-powered shopping, medical analysis, and autonomous driving capabilities. And by 2,022 the global market for the subfield is projected to reach $48.6 billion annually, up from just $6.6 billion in 2015.

For many years now, China has been the world’s factory. Even in 2,020 as other economies struggled with the effects of the pandemic, China’s manufacturing output was $3.854 trillion, up from the previous year, accounting for nearly a third of the global market.

But if you are still thinking of China’s factories as sweatshops, it’s probably time to change your perception. The Chinese economic recovery from its short-lived pandemic blip has been boosted by its world-beating adoption of artificial intelligence (AI). After overtaking the U.S. in 2,014 China now has a significant lead over the rest of the world in AI patent applications. In academia, China recently surpassed the U.S. in the number of both AI research publications and journal citations. Commercial applications are flourishing: a new wave of automation and AI infusion is crashing across a swath of sectors, combining software, hardware and robotics.

As a society, we have experienced three distinct industrial revolutions: steam power, electricity and information technology. I believe AI is the engine fueling the fourth industrial revolution globally, digitizing and automating everywhere. China is at the forefront in manifesting this unprecedented change.

U.S. government commits to purchase approximately 1.7 million courses of Molnupiravir upon issuance of Emergency Use Authorization or approval by the U.S. Food and Drug Administration.

KENILWORTH, N.J. 0 June 17 2021 /PRNewswire/ — Merck (NYSE: MRK), known as MSD outside the United States and Canada 0 today announced it has entered into a procurement agreement with the United States government for Molnupiravir (MK-4482). Molnupiravir is currently being evaluated in a Phase 3 clinical trial, the MOVe-OUT study, for the treatment of non-hospitalized patients with laboratory-confirmed COVID-19 and at least one risk factor associated with poor disease outcomes. MSD is developing Molnupiravir in collaboration with Ridgeback Biotherapeutics.

“MSD is pleased to collaborate with the U.S. government on this new agreement that will provide Americans with COVID-19 access to molnupiravir – an investigational oral therapy being studied for outpatient use early in the course of disease – if it is authorized or approved,” said Rob Davis 0 president, MSD. “In addition to this agreement with the U.S. government, we are actively engaged in numerous efforts to make molnupiravir available globally to fulfill MSD’s commitment to widespread access.”

The covid-19 pandemic has reinforced humanity’s dependence on modern tech, but the same tools that enable remote working are also being used to spread disinformation and perpetuate cybercrime. Ambivalence towards technology is nothing new.

Read more of our coverage of Science & technology: https://econ.st/3CdkVa5

See our Technology Quarterlies: https://econ.st/3jldAN6

Why is pessimism about the impact of technology nothing new? https://econ.st/3Cfme8B

Circa 2019


To figure out how the body changes over time, researchers are increasingly looking to understand epigenetics, the study of changes in organisms caused by modification of gene expression rather than alteration of the genetic code itself. This scientific endeavor extends to teeth as well.

Yang Chai, associate dean of research at the Herman Ostrow School of Dentistry of USC, reported in a recent article how he and colleagues discovered that epigenetic regulation can control tooth root patterning and development.

“This is an aspect that doesn’t involve change in the DNA sequence, but it’s basically through the control where you make the genes available or unavailable for transcription, which can determine the pattern,” he explained.