Oregon State University scientists have invented a way to make magnetic nanoparticles that get hotter than any previous nanoparticle, improving their cancer fighting ability.
Faculty from the OSU College of Pharmacy spearheaded a collaboration that developed an advanced thermal decomposition method for producing nanoparticles able to reach temperatures in cancer lesions of up to 50 degrees Celsius, or 122 degrees Fahrenheit, when exposed to an alternating magnetic field.
Findings of the preclinical study led by Oleh Taratula and Olena Taratula were published today in the journal Small Methods.
Last year, MIT developed an AI/ML algorithm capable of learning and adapting to new information while on the job, not just during its initial training phase. These “liquid” neural networks (in the Bruce Lee sense) literally play 4D chess — their models requiring time-series data to operate — which makes them ideal for use in time-sensitive tasks like pacemaker monitoring, weather forecasting, investment forecasting, or autonomous vehicle navigation. But, the problem is that data throughput has become a bottleneck, and scaling these systems has become prohibitively expensive, computationally speaking.
On Tuesday, MIT researchers announced that they have devised a solution to that restriction, not by widening the data pipeline but by solving a differential equation that has stumped mathematicians since 1907. Specifically, the team solved, “the differential equation behind the interaction of two neurons through synapses… to unlock a new type of fast and efficient artificial intelligence algorithms.”
“The new machine learning models we call ‘CfC’s’ [closed-form Continuous-time] replace the differential equation defining the computation of the neuron with a closed form approximation, preserving the beautiful properties of liquid networks without the need for numerical integration,” MIT professor and CSAIL Director Daniela Rus said in a Tuesday press statement. “CfC models are causal, compact, explainable, and efficient to train and predict. They open the way to trustworthy machine learning for safety-critical applications.”
What will it take for a same-sex couple—two males or two females—to be able to produce a biological child by combining their genomes in the same way that male-female couples do? Just to be clear, we’re not talking about adopting. Nor do we mean one mate fertilizes a donor egg or is fertilized with donated sperm. Those things have long existed. We mean you take two women or two men and make a baby.
Bringing together concepts from electrical engineering and bioengineering tools, Technion and MIT scientists collaborated to produce cells engineered to compute sophisticated functions— biocomputers of sorts.
Graduate students and researchers from Technion—Israel Institute of Technology Professor Ramez Daniel’s Laboratory for Synthetic Biology & Bioelectronics worked together with Professor Ron Weiss from the Massachusetts Institute of Technology to create genetic “devices” designed to perform computations like artificial neural circuits. Their results were recently published in Nature Communications.
The genetic material was inserted into the bacterial cell in the form of a plasmid: a relatively short DNA molecule that remains separate from the bacteria’s “natural” genome. Plasmids also exist in nature, and serve various functions. The research group designed the plasmid’s genetic sequence to function as a simple computer, or more specifically, a simple artificial neural network. This was done by means of several genes on the plasmid regulating each other’s activation and deactivation according to outside stimuli.
Synopsis: In this talk we articulate a positive vision of the future that is both viable given what we know, and also utterly radical in its implications. We introduce two key insights that, when taken together, synergize in powerful ways. Namely, (a) the long-tails of pleasure and pain, and (b) the correlation between wellbeing, productivity, and intelligence. This informs us how to distribute resources if we want to maximize wellbeing. Given the weight of the extremes, it is important to take them into account. But because of the causal significance of more typical hedonic ranges, engineering our baseline is a key consideration. This makes it natural to break down the task of paradise engineering into three components:
Avoid negative extremes. increase hedonic baseline, and. achieve new heights of experience.
With regards to : the future of consciousness is anodyne. It lacks extreme suffering in any of its guises. We will see how, if we aim right, a significant proportion of extreme suffering can be prevented with pragmatic technologies already available. Even just applying what we know today would be as significant for the reduction of suffering as the advent of anesthesia was in the context of surgery.
On : the future of consciousness is engaging. From novelty generation to Buddhist annealing, baseline-enhancing interventions will change the way we think of life. It is not only about making everyday fun, but also the economics of it.
And : the future of consciousness is ecstatic. A science of ecstasy will allow us to safely and reliably sample from a wide range of time-tested ultra-blissful peak experiences. A common cause with other sentient beings, and indeed with the interests of consciousness at large, can be forged in the knowledge of such deep experiences.
They give you a genuine, non-sentimental, reason to live. Together, action on these three levels can significantly advance the cause of eliminating suffering and engineering paradise. And our assessment is: there is a lot of low-hanging fruit in this space. Let’s pick it up!
Accelerating a new wave of personalized healthcare through more effective, efficient, and ethical drug and therapy discovery, development, and testing.
The new study found a correlation between outdoor artificial light at night (LAN) and higher rates of diabetes.
According to a new study, exposure to outdoor artificial light at night (LAN) is associated with an increased risk of diabetes, along with impaired glucose control.
A result of the gradual increase in human lifespan and high and persistent levels of fertility in some countries.
The world’s population hit eight billion today, November 15, and this is a “milestone in human development,” according to a statement by the United Nations (UN).
This unprecedented growth is due to the gradual increase in human lifespan owing to improvements in public health, nutrition, personal hygiene, and medicine.
Dmytro Varavin/iStock.
Considering the fact that the last time the global population notched seven billion was in 2011, the world population increased by one billion in the last 11 years. This raises concerns about overpopulation, which is directly linked to climate change.
Frank Close tells the human story of how we solved The Infinity Puzzle – once the bane of physics
INFINITY. In mathematics, it’s a curiosity. In physics, it’s a disease. It reared its head back in the 1940s, with quantum electrodynamics (QED), the theory of electromagnetism.
Deepfakes, which usually involve superimposing someone’s face and voice onto another person, started gaining attention a few years ago when adult websites began banning videos where the technique was used to add famous actresses’ faces to porn stars’ bodies.