Toggle light / dark theme

Great article by the great Steve Hill. One little thing:

“The life extension community unfortunately does have a reputation for being long on promises and short on delivery. With what is now decades of research, there are still no effective therapies against aging.”

Well, George Church commented recently that life extension does exist for mice and worms. And there is one human trial underway via plasma dilution and another one later this year.


Despite a wealth of knowledge gained in the past three decades concerning the molecular underpinnings of Alzheimer’s disease (AD), progress towards obtaining effective, disease modifying therapies has proven to be challenging. In this manner, numerous clinical trials targeting the production, aggregation, and toxicity of beta-amyloid, have failed to meet efficacy standards. This puts into question the beta-amyloid hypothesis and suggests that additional treatment strategies should be explored. The recent emergence of CRISPR/Cas9 gene editing as a relatively straightforward, inexpensive, and precise system has led to an increased interest of applying this technique in AD. CRISPR/Cas9 gene editing can be used as a direct treatment approach or to help establish better animal models that more faithfully mimic human neurodegenerative diseases. In this manner, this technique has already shown promise in other neurological disorders, such as Huntington’s disease. The purpose of this review is to examine the potential utility of CRISPR/Cas9 as a treatment option for AD by targeting specific genes including those that cause early-onset AD, as well as those that are significant risk factors for late-onset AD such as the apolipoprotein E4 (APOE4) gene.

Keywords: Alzheimer’s disease, CRISPR/Cas9, Gene editing, Treatment, Huntington’s disease, iPSC neurons.

Alzheimer’s Disease (AD) is a progressive and fatal neurodegenerative disorder that primarily affects older adults and is the most common cause of dementia [1]. Currently it afflicts 5.5 million Americans and that number is expected to triple by 2050. At the present time, it is the third leading cause of death behind heart disease and cancer, with an estimated 700,000 Americans ages65 years will have AD when they die [2]. In addition, the cost of the disease is substantial with $259 billion health care dollars going to manage the disease currently, and by the middle of the century costs are predicted to soar over $1.2 trillion, which will completely bankrupt the healthcare system in the USA [3]. Worldwide, 47 million people live with dementia and that number is projected to increase to more than 131 million by 2050 with an estimated worldwide cost of US $818 billion [4].

In addition to its premium vacuums 0, hair styling products 0, and gale-force bathroom hand dryers, Dyson is also known for its air purifiers featuring a bladeless design that makes them quieter and safer, but also a glass HEPA filter inside that promises to remove 99.97% of unwanted air particles in a home like pollen, mold, bacteria, pollution, and odors. There’s even one that can eliminate formaldehyde. That’s great for when you’re at home or the office, but a four-foot tall purifier tethered to a power outlet offers no protection from pollution anywhere else.

The Dyson Zone is the company’s first personal air purification device, and it comes with headphones as a side dish. Trojan-horsed into the high-end bluetooth headset, the Zone offers a buffer of filtration between the wearer and the outside world. When worn out in public, users may feel a bit like Bane from Batman. There may be some awkward stares, but perhaps there will be fewer than expected, thanks to the presence of the headphones.

The company started working on the Zone six years ago. The initial protype was a “snorkel-like clean air mouthpiece paired with a backpack to hold the motor and inner workings,” according to a press release. The final product—over 500 iterations later—is a huge improvement when it comes to design and ergonomics. It still looks like it might take some time to get used to, though maybe less so in the era of Covid-19 than when Dyson’s engineers first started on it.

Mayo Clinic researchers have proposed a new model for mapping the symptoms of Alzheimer’s disease to brain anatomy. This model was developed by applying machine learning to patient brain imaging data. It uses the entire function of the brain rather than specific brain regions or networks to explain the relationship between brain anatomy and mental processing. The findings are reported in Nature Communications.

“This new model can advance our understanding of how the brain works and breaks down during aging and Alzheimer’s disease, providing new ways to monitor, prevent and treat disorders of the mind,” says David T. Jones, M.D., a Mayo Clinic neurologist and lead author of the study.

Alzheimer’s disease typically has been described as a protein-processing problem. The toxic proteins amyloid and tau deposit in areas of the brain, causing neuron failure that results in clinical symptoms such as , difficulty communicating and confusion.

Despite the remarkable efficacy of CAR-T cell therapies to treat certain blood cancers, they are expensive thanks partly to complex and lengthy manufacturing procedures. | CAR-T therapies are expensive thanks partly to complex and lengthy manufacturing procedures. Now, scientists have found a potential way that could cut the CAR-T processing time from more than two weeks to a single day by using an implant.

Tuberculosis (TB) is a potentially serious infectious disease caused by a type of bacterium called Mycobacterium tuberculosis. The bacteria usually affect the lungs, but also can invade other organs.

In 2018, tuberculosis bacteria infected 1.7 billion people — roughly 23% of the world’s population, according to the Centers for Disease Control and Prevention (CDC). In 2020, the CDC reported 7,174 TB cases and 13 million people living with a latent tuberculosis infection (the germs are in the body but do not cause sickness) in the United States.

Even after successful therapy for tuberculosis, survivors of the disease have an increased risk of recurrent infection and death. A new study published recently by researchers at Baylor College of Medicine found that the cells of humans and animals who have recovered from tuberculosis had prematurely aged up to 12 to 14 years.

𝐍𝐞𝐰 𝐀𝐭𝐥𝐚𝐬:

The Neuro-Network.

𝐄𝐧𝐳𝐲𝐦𝐞 𝐛𝐥𝐨𝐜𝐤𝐞𝐫 𝐜𝐨𝐮𝐥𝐝 𝐨𝐩𝐞𝐧 𝐧𝐞𝐰 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭𝐬 𝐟𝐨𝐫 𝐧𝐞𝐮𝐫𝐨𝐝𝐞𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐝𝐢𝐬𝐞𝐚𝐬𝐞𝐬

𝙍𝙚𝙨𝙚𝙖𝙧𝙘𝙝𝙚𝙧𝙨 𝙝𝙖𝙫𝙚 𝙪𝙣𝙘𝙤𝙫𝙚𝙧𝙚𝙙 𝙝𝙤𝙬 𝙖 𝙘𝙚𝙧𝙩𝙖𝙞𝙣 𝙢𝙤𝙡𝙚𝙘𝙪𝙡𝙖𝙧 𝙥𝙖𝙩𝙝𝙬𝙖𝙮 𝙩𝙧𝙞𝙜𝙜𝙚𝙧𝙨 𝙩𝙝𝙚 𝙗𝙧𝙚𝙖𝙠𝙙𝙤𝙬𝙣 𝙤𝙛 𝙣𝙚𝙧… See more.


Circa 2017 😀


As the most common subtype of Leber congenital amaurosis (LCA), LCA10 is a severe retinal dystrophy caused by mutations in the CEP290 gene. The most frequent mutation found in patients with LCA10 is a deep intronic mutation in CEP290 that generates a cryptic splice donor site. The large size of the CEP290 gene prevents its use in adeno-associated virus (AAV)-mediated gene augmentation therapy. Here, we show that targeted genomic deletion using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system represents a promising therapeutic approach for the treatment of patients with LCA10 bearing the CEP290 splice mutation. We generated a cellular model of LCA10 by introducing the CEP290 splice mutation into 293FT cells and we showed that guide RNA pairs coupled with SpCas9 were highly efficient at removing the intronic splice mutation and restoring the expression of wild-type CEP290. In addition, we demonstrated that a dual AAV system could effectively delete an intronic fragment of the Cep290 gene in the mouse retina. To minimize the immune response to prolonged expression of SpCas9, we developed a self-limiting CRISPR/Cas9 system that minimizes the duration of SpCas9 expression. These results support further studies to determine the therapeutic potential of CRISPR/Cas9-based strategies for the treatment of patients with LCA10.

Keywords: CEP290; CRISPR/Cas9; LCA10.

Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.