Toggle light / dark theme

New Research Shows HIV Can Lie Dormant in the Brain

Scientists from the HIV Cure Center at the UNC School of Medicine, University of California San Diego, Emory University, and University of Pennsylvania have been searching for where exactly these latent cells are hiding in the body. New research published in the Journal of Clinical Investigations confirms that microglial cells – which are specialized immune cells with a decade-long lifespan in the brain – can serve as a stable viral reservoir for latent HIV.


Yuyang Tang, PhD, and Guochun Jiang, PhD, in the UNC School of Medicine extracted living brain tissue to conclude that specialized immune cells in the brain can harbor latent but replication-competent HIV.

As a part of its life cycle, the human immunodeficiency virus-1 (HIV) inserts a copy of its DNA into human immune cells. Some of these newly infected immune cells can then transition into a dormant, latent state for a long period of time, which is referred to as HIV latency.

Although current therapies, such current antiretroviral therapy (ART), can successfully block the virus from replicating further, it cannot eradicate latent HIV. If treatment is ever discontinued, the virus can rebound from latency and reignite the progression of HIV infection to AIDS.

Robot-assisted deep brain stimulation surgery could treat epilepsy

Three of these procedures have thus far been undertaken in Canada.

A neurosurgeon in Canada has become the first in the nation to perform robot-assisted deep brain stimulation surgery on a patient suffering from epilepsy with success.

This is according to a report by CTV News published on Wednesday.


Interesting Engineering is a cutting edge, leading community designed for all lovers of engineering, technology and science.

Smart drugs fall short as cognitive function enhancers

Background

Many everyday tasks can fall under the mathematical class of “hard” problems. Typically, these problems belong to the complexity class of nondeterministic polynomial (NP) hard. These tasks require systematic approaches (algorithms) for optimal outcomes. In the case of significant complex problems (e.g., the number of ways to fix a product or the number of stops to be made on a delivery trip), more computations are required, which rapidly outgrows cognitive capacities.

A recent Science Advances study investigated the effectiveness of three popular smart drugs, namely, modafinil (MOD), methylphenidate (MPH), and dextroamphetamine (DEX), against the difficulty of real-life daily tasks, i.e., the 0–1 knapsack optimization problem (“knapsack task”). A knapsack task is basically a combinatorial optimization task, the class of NP-time challenging problems.

Scientists create human embryos without egg or sperm

This week, during The Global Stem Cell Event in Boston, Mass., scientists revealed that they have created a synthetic human embryo without an egg or sperm.

It isn’t clear yet whether these embryos could eventually mature into living, breathing, humans. However, their mere existence is “groundbreaking,” according to The Guardian, the first outlet to report on the discovery.

Details of this research has not yet been published.

Machine learning algorithm identifies 3 natural anti-aging chemicals

Researchers have used a machine learning model to identify three compounds that could combat aging. They say their approach could be an effective way of identifying new drugs, especially for complex diseases.

Cell division is necessary for our body to grow and for tissues to renew themselves. Cellular senescence describes the phenomenon where cells permanently stop dividing but remain in the body, causing tissue damage and aging across body organs and systems.

Ordinarily, senescent cells are cleared from the body by our immune system. But, as we age, our immune system is less effective at clearing out these cells and their number increases. An increase in senescent cells has been associated with diseases such as cancer, Alzheimer’s disease and the hallmarks of aging such as worsening eyesight and reduced mobility. Given the potentially deleterious effects on the body, there has been a push to develop effective senolytics, compounds that clear out senescent cells.

Telomere Length Test #6: Correlations With Diet

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
Telomere Length, Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

At-Home Blood Testing (SiPhoxHealth): https://getquantify.io/mlustgarten.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

New method can manipulate the shape and packing of DNA

A human cell harbors roughly 2 meters of DNA, encompassing the essential genetic information of an individual. If one were to unwind and stretch out all the DNA contained within a single person, it would span a staggering distance—enough to reach the sun and back 60 times over. In order to manage such an astounding volume of biological information, the cell compacts its DNA into tightly packed chromosomes.

“Imagine DNA as a piece of paper upon which all our is written,” says Minke A.D. Nijenhuis, co-corresponding author. “The paper is folded into a very tight structure in order to fit all of that information into a small cell nucleus. To read the information, however, parts of the paper have to be unfolded and then refolded. This spatial organization of our genetic code is a central mechanism of life. We therefore wanted to create a methodology that allows researchers to engineer and study the compaction of double-stranded DNA.”

Natural DNA is often double-stranded: one strand to encode the genes and one backup strand, intertwined in a . The double helix is stabilized by Watson-Crick interactions, which allow the two strands to recognize and pair with one another. Yet there exists another, lesser-known class of interactions between DNA. These so-called normal or reverse Hoogsteen interactions allow a third strand to join in, forming a beautiful triple helix (Figure 1).

/* */