Toggle light / dark theme

A new study shows which factor plays a bigger role as we age.

There are many elements that determine how we age. This includes our genetics, the environment, and our age itself. But what key component has the most profound impact on aging?

According to a new study by researchers at the University of California — Berkeley, aging and the environment play more of a key role in determining our health in later years, than genetics. The study was published in the journal Nature Communications.

Aging affects health more than genes.


Genetics DNA

According to a new study by researchers at the University of California – Berkeley, aging and the environment play more of a key role in determining our health in later years, than genetics. The study was published in the journal Nature Communications.

Maybe the science is finally catching up with BioViva CEO Elizabeth Parrish.

As a therapeutic approach, however, gene therapy suffers somewhat from the undue weight of exuberant expectations. For years people have speculated about applications going beyond restoration of lost body function and into biological enhancement, such as longevity. Some now categorize gene therapy as belonging to the realm of transhumanism—the use of medical and surgical interventions to enhance the body, or give it extra capabilities, as opposed to treating things that go wrong.

People often need to adapt to unexpected and sudden events, such as a road construction or a road accident while driving, a broken automatic payment or ATM machine, and changes in weather. To effectively deal with these events, they must possess what is known as behavioral flexibility, or the ability to deviate from routine and well-establish behavioral patterns.

To adapt their behavior based on unforeseen events, humans need to encode and retrieve reward-related memories and use them to inform their present or future choices. This process entails the integration of different cognitive abilities that are supported by different regions of the .

Past studies found that patients with different neuropsychiatric disorders and those suffering from an addiction tend to have a scarce behavioral flexibility. This often adversely affects their quality of living, as it makes dealing with the uncertainty of daily life particularly challenging.

Wake Forest Institute for Regenerative Medicine (WFIRM) scientists working on CRISPR/Cas9-mediated gene editing technology have developed a method to increase efficiency of editing while minimizing DNA deletion sizes, a key step toward developing gene editing therapies to treat genetic diseases.

CRISPR (clustered regularly interspaced short palindromic repeats) technology is used to alter DNA sequences and modify gene function. CRISPR/Cas9 is an enzyme that is used like a pair of scissors to cut two strands of DNA at a specific location to add, remove or repair bits of DNA. By modifying gene function, scientists hope to treat by halting a diseased cell’s ability to continue replicating the defective DNA. CRISPR/Cas9 is the most versatile genetic manipulation available and has a wide range of potential applications. While CRISPR/Cas9 mainly generates short insertions or deletions at the target site, it may also make large DNA deletions around the specific target site. These large deletions cause safety concerns and may decrease functional editing efficiency.

The WFIRM team is looking for ways to reduce the chances of this happening. The research described in their recent paper, published recently in Nucleic Acids Research, sought to address the generation of unpredictable on-target long DNA deletions and find a way to guard against them, said lead author Baisong Lu, Ph.D., of WFIRM.

What drew his attention was that the cells seemed to change much faster than expected—they arranged themselves rapidly over a few days into a lopsided circle.

What was it? Shao startled Googling to see if he could identify the structure. That’s when he landed on a website called The Virtual Human Embryo and found some microscope photos of ten-day old human embryos shortly after implantation, fused to the uterine wall. There was the beginning of the amniotic sac and, inside it, the embryonic disc, or future body. They matched what he was seeing.

Shao informed his coworkers, a mixed team of biologists and engineers, at the University of Michigan. “When I showed the image to the team, everyone said, ” Wow, we need to figure out what to do,” says Shao. Had they somehow made a real human embryo from stem cells? ” At that point, we started to be more cautious.”

Amid much speculation and research about how our genetics affect the way we age, a University of California, Berkeley, study now shows that individual differences in our DNA matter less as we get older and become prone to diseases of aging, such as diabetes and cancer.

In a study of the relative effects of genetics, aging and the environment on how some 20,000 human genes are expressed, the researchers found that aging and environment are far more important than genetic variation in affecting the expression profiles of many of our genes as we get older. The level at which genes are expressed — that is, ratcheted up or down in activity — determines everything from our hormone levels and metabolism to the mobilization of enzymes that repair the body.

“How do your genetics — what you got from your sperm donor and your egg donor and your evolutionary history — influence who you are, your phenotype, such as your height, your weight, whether or not you have heart disease?” said Peter Sudmant, UC Berkeley assistant professor of integrative biology and a member of the campus’s Center for Computational Biology. “There’s been a huge amount of work done in human genetics to understand how genes are turned on and off by human genetic variation. Our project came about by asking, ‘How is that influenced by an individual’s age?’ And the first result we found was that your genetics actually matter less the older you get.”

Circa 2015 face_with_colon_three


From driving water wheels to turning turbines, waterhas been used as the prime mover of machinery and the powerhouse of industry for many centuries. In ancient times, the forces of flowing water were even harnessed to power the first rudimentaryclocks. Now, engineers at Stanford University have created the world’s first water-operated computer. Using magnetized particles flowing through a micro-miniature network ofchannels, the machine runs like clockwork and is claimed to be capable ofperforming complex logical operations.

Using poppy-seed sizeddroplets of water impregnated with magnetic nanoparticles (those handy little elementsbeing used in everything from drug delivery inhumans to creating e-paper whiteboards), the new fluidic computer uses electromagnetic fields to accurately pump thesedroplets around a set of physical gates to perform logical operations. Suspendedin oil and timed to move in very specific steps, the droplets in the system cantheoretically be used to accomplish any process that a normal electroniccomputer can, albeit at considerably slower speeds.

Stanford assistant professor Manu Prakash has spent almost a decadethinking about such a device, ever since he was a graduate student. The manyand varied components required of a fluidic computer have slowly coalesced inhis mind over that time, with the most fundamental component of all – an accurateoperating clock to drive the logic – being the crucial element in bringing hisinvention to fruition. Ultimately, Prakash built a rotating magnetic field to synchronize the flow of all the droplets in a precisely timed manner, andact as the clock.