Menu

Blog

Archive for the ‘bioengineering’ category: Page 22

Mar 31, 2023

New nanoparticles can perform gene-editing in the lungs

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology

Engineers at MIT and the University of Massachusetts Medical School have designed a new type of nanoparticle that can be administered to the lungs, where it can deliver messenger RNA encoding useful proteins.

With further development, these could offer an inhalable treatment for and other diseases of the , the researchers say.

“This is the first demonstration of highly efficient delivery of RNA to the lungs in mice. We are hopeful that it can be used to treat or repair a range of genetic diseases, including cystic fibrosis,” says Daniel Anderson, a professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).

Mar 30, 2023

Artificial Cells — The Powerhouse of the Future

Posted by in categories: bioengineering, biotech/medical

Assessing how energy-generating synthetic organelles could sustain artificial cells.

Researchers have assessed the progress and challenges in creating artificial mitochondria and chloroplasts for energy production in synthetic cells. These artificial organelles could potentially enable the development of new organisms or biomaterials. The researchers identified proteins as the most crucial components for molecular rotary machinery, proton transport, and ATP production, which serves as the cell’s primary energy currency.

Energy production in nature is the responsibility of chloroplasts and mitochondria and is crucial for fabricating sustainable, synthetic cells in the lab. Mitochondria are not only “the powerhouses of the cell,” as the middle school biology adage goes, but also one of the most complex intracellular components to replicate artificially.

Mar 29, 2023

How energy-generating synthetic organelles could sustain artificial cells — a powerhouse of the future

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Energy production in nature is the responsibility of mitochondria and chloroplasts, and is crucial for fabricating sustainable, synthetic cells in the lab. Mitochondria are “the powerhouses of the cell,” but are also one of the most complex intracellular components to replicate artificially.

In Biophysics Reviews, by AIP Publishing, researchers from Sogang University in South Korea and the Harbin Institute of Technology in China identified the most promising advancements and greatest challenges of artificial mitochondria and chloroplasts.

“If scientists can create artificial mitochondria and chloroplasts, we could potentially develop synthetic cells that can generate energy and synthesize molecules autonomously. This would pave the way for the creation of entirely new organisms or biomaterials,” author Kwanwoo Shin said.

Mar 29, 2023

Immortality is attainable by 2030: Google scientist

Posted by in categories: bioengineering, computing, Elon Musk, genetics, life extension, neuroscience, Ray Kurzweil

Do you really want to live forever? Futurist Ray Kurzweil has predicted that humans will achieve immortality in just seven years. Genetic engineering company touts ‘Jurassic Park’-like plan to ‘de-extinct’ dodo bird Elon Musk ‘comfortable’ putting Neuralink chip into one of his kids.

Read more ❯.

Mar 29, 2023

10 Women Founders Taking The Synthetic Biology World

Posted by in categories: bioengineering, biological, food, health

Here’s a list of 10 visionary synbio company founders – who happen to be women – harnessing the power of biology to transform everything from health to human and animal nutrition, agriculture, haircare, bioremediation, and mining.

Mar 27, 2023

How cell mechanics influences everything

Posted by in categories: bioengineering, biotech/medical, chemistry

“People study cells in the context of their biology and biochemistry, but cells are also simply physical objects you can touch and feel,” Guo says. “Just like when we construct a house, we use different materials to have different properties. A similar rule must apply to cells when forming tissues and organs. But really, not much is known about this process.”

His work in cell mechanics led him to MIT, where he recently received tenure and is the Class of ’54 Career Development Associate Professor in the Department of Mechanical Engineering.

At MIT, Guo and his students are developing tools to carefully poke and prod cells, and observe how their physical form influences the growth of a tissue, organism, or disease such as cancer. His research bridges multiple fields, including cell biology, physics, and mechanical engineering, and he is working to apply the insights from cell mechanics to engineer materials for biomedical applications, such as therapies to halt the growth and spread of diseased and cancerous cells.

Mar 27, 2023

How We’re Reverse Engineering the Human Brain in the Lab | Sergiu P. Pasca | TED

Posted by in categories: bioengineering, biotech/medical, business, neuroscience

Neuroscientist Sergiu P. Pasca has made it his life’s work to understand how the human brain builds itself — and what makes it susceptible to disease. In a mind-blowing talk laden with breakthrough science, he shows how his team figured out how to grow “organoids” and what they call brain “assembloids” — self-organizing clumps of neural tissue derived from stem cells that have shown the ability to form circuits — and explains how these miniature parts of the nervous system are bringing us closer to demystifying the brain.

If you love watching TED Talks like this one, become a TED Member to support our mission of spreading ideas: http://ted.com/membership.

Continue reading “How We’re Reverse Engineering the Human Brain in the Lab | Sergiu P. Pasca | TED” »

Mar 24, 2023

The Rise Of Genetic Engineering | Gene-Editing | Documentary

Posted by in categories: bioengineering, biotech/medical, education, food, genetics

Genetic Engineering extends far beyond the controversial news headlines that obsess over ‘designer babies’. In the science community, gene-editing tools like CRISPR and PRIME editing will do nothing less than save the planet.

The Rise Of Genetic Engineering (2022)
Writers: Kyle McCabe, Christopher Webb Young.
Stars: Rodolphe Barrangou, George Church, Mary Beth Dallas.
Genre: Documentary.
Country: United States.
Language: English.
Release Date: August 24, 2022 (United States)

Continue reading “The Rise Of Genetic Engineering | Gene-Editing | Documentary” »

Mar 17, 2023

#176 Human organoids are new AI frontier; Listening to the big bang through the cosmic microwave background

Posted by in categories: bioengineering, biotech/medical, ethics, information science, robotics/AI

Brainoids — tiny clumps of human brain cells — are being turned into living artificial intelligence machines, capable of carrying out tasks like solving complex equations. The team finds out how these brain organoids compare to normal computer-based AIs, and they explore the ethics of it all.

Sickle cell disease is now curable, thanks to a pioneering trial with CRISPR gene editing. The team shares the story of a woman whose life has been transformed by the treatment.

We can now hear the sound of the afterglow of the big bang, the radiation in the universe known as the cosmic microwave background. The team shares the eerie piece that has been transposed for human ears, named by researchers The Echo of Eternity.

Mar 17, 2023

CRISPR Gene-Editing Technique Reverses Vision Loss in Mice

Posted by in categories: bioengineering, biotech/medical, genetics

Summary: Using a highly versatile form of CRISPR gene editing, researchers successfully restored vision in mice with retinitis pigmentosa.

Source: Rockefeller University Press.

Researchers in China have successfully restored the vision of mice with retinitis pigmentosa, one of the major causes of blindness in humans.

Page 22 of 196First1920212223242526Last