Toggle light / dark theme

Genetic Engineering and DNA alteration is an emerging technology with huge ramifications in the future, including potentially altering the DNA of adult humans, not just embryos or plants \& animals.
Try Dashlane here: https://www.dashlane.com/isaacarthur.
Get 10% off now with my promo code: isaacarthur.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://nebula.tv/videos/isaacarthur–
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version:
/ dna-manipulation-in-living-subjects.
Episode’s Narration-only version: / dna-manipulation-in-living-subjects-narrat…

Credits:

This video explores 20 emerging technologies and their future. Watch this next video about the 10 stages of AI: • The 10 Stages of Artificial Intelligence.
🎁 5 Free ChatGPT Prompts To Become a Superhuman: https://bit.ly/3Oka9FM
🤖 AI for Business Leaders (Udacity Program): https://bit.ly/3Qjxkmu.
☕ My Patreon: / futurebusinesstech.
➡️ Official Discord Server: / discord.

💡 Future Business Tech explores the future of technology and the world.

Examples of topics I cover include:
• Artificial Intelligence & Robotics.
• Virtual and Augmented Reality.
• Brain-Computer Interfaces.
• Transhumanism.
• Genetic Engineering.

SUBSCRIBE: https://bit.ly/3geLDGO

CRISPR/Cas systems have undergone tremendous advancement in the past decade. These precise genome editing tools have applications ranging from transgenic crop development to gene therapy and beyond. And with their recent development of CRISPR-COPIES, researchers at the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) are further improving CRISPR’s versatility and ease of use.

“CRISPR-COPIES is a tool that can quickly identify appropriate chromosomal integration sites for genetic engineering in any organism,” said Huimin Zhao, CABBI Conversion Theme Leader and Steven L. Miller Chair of Chemical and Biomolecular Engineering (ChBE) at the University of Illinois. “It will accelerate our work in the metabolic engineering of non-model yeasts for cost-effective production of chemicals and biofuels.”

Gene editing has revolutionized scientists’ capabilities in understanding and manipulating genetic information. This form of genetic engineering allows researchers to introduce new traits into an organism, such as resistance to pests or the ability to produce a valuable biochemical.

In the realm of scientific innovation, the past decade has seen the CRISPR/Cas systems emerge as a groundbreaking tool in genome editing, boasting applications that span from enhancing crop yields to pioneering gene therapy.

The recent advent of CRISPR-COPIES by the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) marks a significant leap forward, refining CRISPR’s flexibility and user-friendliness.

CRISPR-COPIES represents a cutting-edge solution designed to swiftly pinpoint ideal chromosomal sites for genetic modification across any species.

Benjamin Franklin famously wrote: “In this world nothing can be said to be certain, except death and taxes.” While that may still be true, there’s a controversy simmering today about one of the ways doctors declare people to be dead.


Bioethicists, doctors and lawyers are weighing whether to redefine how someone should be declared dead. A change in criteria for brain death could have wide-ranging implications for patients’ care.

With more than 1,000 nerve endings, human skin is the brain’s largest sensory connection to the outside world, providing a wealth of feedback through touch, temperature and pressure. While these complex features make skin a vital organ, they also make it a challenge to replicate.

By utilizing nanoengineered hydrogels that exhibit tunable electronic and thermal biosensing capabilities, researchers at Texas A&M University have developed a 3D-printed electronic skin (E-skin) that can flex, stretch and sense like human skin.

“The ability to replicate the sense of touch and integrate it into various technologies opens up new possibilities for human-machine interaction and advanced sensory experiences,” said Dr. Akhilesh Gaharwar, professor and director of research for the Department of Biomedical Engineering. “It can potentially revolutionize industries and improve the quality of life for individuals with disabilities.”

In the United States, the shortage of available organs for transplantation remains a critical issue, with over 100,000 individuals currently on the waiting list. The demand for organs, including hearts, kidneys, and livers, significantly outweighs the available supply, leading to prolonged waiting times and often, devastating consequences.

It is estimated that approximately 6,000 Americans lose their lives while waiting for a suitable donor organ every year.

Researchers at Carnegie Mellon University have developed a novel tissue engineering technique that aims to potentially bridge the gap between organ demand and availability, offering a beacon of hope.