Equitable and accessible education in life sciences, bioengineering, and synthetic biology is crucial for training the next generation of scientists. Here the authors present the CRISPRkit, a cost-effective educational tool that enables high school students to perform CRISPR experiments affordably and safely without prior experience, using smartphone-based quantification and an automated algorithm for data analysis.
Category: bioengineering – Page 23
At the mere flick of a magnetic field, mice engineered with nanoparticle-activated ‘switches’ inside their brains were driven to feed, socialize, and act like clucky new mothers in an experiment designed to test an innovative research tool.
While ’mind control’ animal experiments are far from new, they have generally relied on cumbersome electrodes tethering the subject to an external system, which not only requires invasive surgery but also sets limits on how freely the test subject can move about.
In what is claimed to be a breakthrough in neurology, researchers from the Institute for Basic Science (IBS) in Korea have developed a method for targeting pathways in the brain using a combination of genetics, nanoparticles, and magnetic fields.
Scientists at the University of Sydney have developed a gene-editing tool with greater accuracy and flexibility than the industry standard, CRISPR, which has revolutionized genetic engineering in medicine, agriculture and biotechnology.
SeekRNA uses a programmable ribonucleic acid (RNA) strand that can directly identify sites for insertion in genetic sequences, simplifying the editing process and reducing errors.
The new gene-editing tool is being developed by a team led by Dr. Sandro Ataide in the School of Life and Environmental Sciences. Their findings have been published in Nature Communications.
“Bridge recombination can universally modify genetic material through sequence-specific insertion, excision, inversion, and more, enabling a word processor for the living genome beyond CRISPR,” said Berkeley’s Patrick Hsu, a senior author of one of the studies and Arc Institute core investigator, in a press release.
CRISPR Coup
Scientists first discovered CRISPR in bacteria defending themselves against viruses. In nature, a Cas9 protein pairs with an RNA guide molecule to seek out viral DNA and, when located, chop it up. Researchers learned to reengineer this system to seek out any DNA sequence, including sequences found in human genomes, and break the DNA strands at those locations. The natural machinery of the cell then repairs these breaks, sometimes using a provided strand of DNA.
In the age of technology everywhere, we are all too familiar with the inconvenience of a dead battery. But for those relying on a wearable health care device to monitor glucose, reduce tremors, or even track heart function, taking time to recharge can pose a big risk.
For the first time, researchers in Carnegie Mellon University’s Department of Mechanical Engineering have shown that a health care device can be powered using body heat alone. By combining a pulse oximetry sensor with a flexible, stretchable, wearable thermoelectric energy generator composed of liquid metal, semiconductors, and 3D printed rubber, the team has introduced a promising way to address battery life concerns.
“This is the first step towards battery-free wearable electronics,” said Mason Zadan, Ph.D. candidate and first author of the research published in Advanced Functional Materials.
Spider spidroin revives the silken splendor.
In their quest to make silk powerful again, not by status but rather by thread strength, scientists turned to an arachnoid. Dragline silk, the thread by which the spider hangs itself from the web, is one of the strongest fibers; its tensile strength—a measure of how much a polymer deforms when strained—is almost thrice that of silkworm silk.2
Beyond durable fashion garments, tough silk fibers are coveted in parachutes, military protective gear, and automobile safety belts, among other applications, so scientists are keen to pull on these threads. While traditional silk production relies on sericulture, arachnophobes can relax: spider farms are not a thing.
To create one-time cures for Alzheimer’s disease, researchers are investigating the application of CRISPR-Cas9 gene-editing for novel therapies. Cutting and pasting genes is difficult with current technology, but CRISPR gene editing may help later stages or those individuals with hereditary mutations. Variants in the lipid transport protein apolipoprotein E (APOE4) have been associated with late-onset Alzheimer’s disease, with a three-to twelve-fold increase in risk.
Researchers engineered the Christchurch gene variation into mice bearing human APOE4 using CRISPR. After that, these mice were crossed, resulting in progeny that carried one or two copies of the modified variation.
The group discovered that mice bearing a single copy of the APOE4-Christchurch variation exhibited a partial defense against Alzheimer’s disease. The disease did not exhibit typical symptoms in mice carrying two copies. The work mimics the advantageous effects of the Christchurch mutation to propose possible treatment strategies for Alzheimer’s disease associated with APOE4.
Boost your knowledge in AI and emerging technologies with Brilliant’s engaging courses. Enjoy 30 days free and 20% off a premium subscription at https://brilliant.org/FutureBusinessTech.
In this video, we explore 20 emerging technologies changing our future, including super-intelligent AI companions, radical life extension through biotechnology and gene editing, and programmable matter. We also cover advancements in flying cars, the quantum internet, autonomous AI agents, and other groundbreaking innovations transforming the future.
🎁 5 Free ChatGPT Prompts To Become a Superhuman: https://bit.ly/3Oka9FM
✨ Join This Channel: / @futurebusinesstech.
00:07 Super Intelligent AI Companions.
04:27 Radical Life Extension.
08:40 Programmable Matter.
11:33 Flying Cars.
16:29 Quantum Internet.
20:34 Autonomous AI Agents.
25:21 Hypersonic Aircraft And Missiles.
29:19 Invisibility Suits.
33:45 Human Brain Simulations.
37:02 Synthetic Biology.
40:54 AI-Enabled Warfare.
44:58 Solar Sail Technology.
49:42 Bionic Eyes.
53:20 Swarm Robotics.
56:40 Room-Temperature Superconductors.
01:01:42 Optical Computing.
01:05:59 Graphene Technology.
01:11:01 Artificial Trees.
01:15:07 Web 3.0
01:18:03 Vertical Farming.
💡 Future Business Tech explores AI, emerging technologies, and future technologies.
SUBSCRIBE: https://bit.ly/3geLDGO
Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small – on the order of nanometers – that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
In new research published in Nature Synthesis (“Interdiffusion-enhanced cation exchange for HgSe and HgCdSe nanocrystals with infrared bandgaps”), University of Illinois at Urbana-Champaign bioengineering professor Andrew Smith and postdoctoral researcher Wonseok Lee have developed mercury selenide (HgSe) and mercury cadmium selenide (HgCdSe) nanocrystals that absorb and emit in the infrared, made from already well-developed, visible spectrum cadmium selenide (CdSe) precursors. The new nanocrystal products retained the desired properties of the parent CdSe nanocrystals, including size, shape and uniformity.
“This is the first example of infrared quantum dots that are at the same level of quality as the ones that are in the visible spectrum,” Smith says.