Toggle light / dark theme

You’ve probably heard of CRISPR — the gene editing tool that essentially lets scientists cut and paste DNA, removing things like HIV and muscular dystrophy from our cells — and now scientists have discovered a way to edit RNA with just as much precision.

RNA is DNA’s close biological cousin, responsible for translating messages from the nucleus to the rest of the cell, and being able to change it could open up all-new disease-fighting possibilities.

Just like CRISPR/Cas9 editing, the new procedure selectively cuts up RNA, which gives us microscopic control over genetic information, and the researchers behind it say it could open up the method could be used to block viruses and halt disease in its tracks.

Read more

Following a controversial top-secret meeting last month, a group of scientists have announced that they’re working on synthesizing human genes from scratch. The project, currently titled HGP-Write, has the stated aim of reducing the cost of gene synthesis to “address a number of human health challenges.” As the group explains, that includes growing replacement organs, engineering cancer resistance and building new vaccinations using human cells. But in order for all of that to happen, the scientists may have to also work on developing a blueprint for what a perfect human would look like.

In some ways, the concept is just an extension of current gene editing (CRISPR) techniques that are proving their worth by saving lives. CRISPR has already been used to save the life of a one-year-old girl with a terminal case of drug-resistant leukemia. Other initiatives using the system involve curing hemophilia and HIV, although the latter has proven capable of fighting back against attempts to kill it. This new project, meanwhile, will devote time and resources to examining the ethics and economics of how far we should go with gene editing.

HGP-Write is being led by DNA pioneer George Church, a Harvard biologist who is already working on various projects to tweak humanity. In a profile, Stat revealed that the scientist published a paper in 2014 pushing “de novo synthesis,” the concept of creating perfect genes from scratch. In early 2015, he used CRISPR to implant wooly mammoth DNA into a living Asian elephant as the first step toward bringing extinct animals back from the dead. Which, when you write it down like that, makes him sound like a less plausible version of John Hammond, the fictional creator of Jurassic Park.

Read more

This is one of those “therotical” topics that many of us have had at some point in our lives with our engineering team pals, or with our research department/ lab buddies. Fun to see Elon Musk share his views on this topic. Who knows; maybe? Last week, we learned that black holes may be nothing more that a multi-layer hologram in space.


“There’s a billion to one chance we’re living in base reality,” Elon Musk said tonight on stage at Recode’s Code Conference, meaning that one of the most influential and powerful figures in tech thinks that it’s overwhelmingly likely we’re just characters living inside a simulation.

The Verge co-founder Josh Topolsky got half-way through asking Musk if he thought our existence was simulated before the Tesla CEO jumped in to finish his question for him. “I’ve had so many simulation discussions it’s crazy,” Musk explained. “You’ve thought about this?” Topolsky asked. “A lot,” Musk replied. “It got to the point where every conversation was the AI / simulation conversation, and my brother and I agreed that we would ban such conversations if we were ever in a hot tub.”

His argument — one presumably honed in the soothing waters of many a jaccuzi — goes that the incredibly fast advancement of video game technology indicates we’ll be capable of creating a fully lifelike simulation of existence in a short span of time. In 40 years, Musk explained, we’ve gone from Pong to massively multiplayer online games with millions of simultaneous players, games with photorealistic graphics, and stand now on the cusp of a new wave of virtual and augmented reality experiences.

A group of scientists on Thursday proposed an ambitious project to create a synthetic human genome, or genetic blueprint, in an endeavour that is bound to raise concerns over the extent to which human life can or should be engineered.

The project, which arose from a meeting of scientists last month at Harvard University, aims to build such a synthetic genome and test it in cells in the laboratory within 10 years. The project was unveiled in the journal Science by the experts involved.

Read more

Scientists have successfully created mice with significantly longer telomeres than normal, resulting in a drop in molecular ageing, without using genetic manipulation.

Telomeres, which are found at the end of all animals’ chromosomes, are thought to be vital to ending ageing, as their shortening as we age is a key factor in cellular ageing and the onset of age-related disease. However, when they are lengthened beyond normal levels in mice, they have the precise opposite effect, protecting against ageing and related diseases, and increasing lifespan.

The mice, which are chimeras carrying both regular and “hyper-long” telomeres, were created using a technique based on epigenic changes, where embryonic stem cells are expanded in vitro, prompting changes to telomeres.

Read more

Daniel G. Nocera, the Harvard professor who made headlines five years ago when he unveiled an artificial leaf, recently unveiled his latest work: an engineered bacteria that converts hydrogen and carbon dioxide into alcohols and biomass. One can be used directly as fuel to power vehicles that run on conventional fuels, while the other can be burned for energy.

Read more

My new article for Vice Motherboard on extreme biohacking that compares the Uncanny Valley to Speciation Syndrome:


Transhumanism tech like CRISPR, 3D printing, and coming biological regeneration of limbs will not only change lives for those that have deformities, but it will change how we look at things like a person with a three-foot tail and maybe even a second head.

At the core of all this is the ingrained belief that the human being is pre-formed organism, complete with one head, four limbs, and other standard anatomical parts. But in the transhumanist age, the human being should be looked at more like a machine—like a car, if you will: something that comes out a particular way with certain attributes, but then can be heavily modified. In fact, it can be rebuilt from scratch.

In the future, there may even be walk-in clinics where people can go to have various gene treatments done to affect their bodies. Already, we have IVF centers where people can use radical tech to privately get pregnant—and also control and monitor various stages of a child’s birth. Eventually, if government allows it, gene editing centers will also offer a multitude of designer baby traits, some which also would come via CRISPR. We might even eventually use artificial wombs for the whole process.

Awesome.


Researchers have developed a new gene editing tool that is more efficient and easier to use. CRISPR-EZ addresses the issue of target RNA accuracy and embryo viability in IVF transgenic mice.

( andrew modzelewski/lin he | university of california berkeley )

CRISPR gene editing has been the subject of many researchers around the world because of its great potential in the study human genetic disease. But more than that, scientists have high regard for this tool because it can help cure complex and debilitating diseases like dementia and cancer.

“The possibility to selectively activate genes using various engineered variants of the CRISPR-Cas9 system left many researchers questioning which of the available synthetic activating Cas9 proteins to use for their purposes. The main challenge was that all had been uniquely designed and tested in different settings; there was no side-by-side comparison of their relative potentials,” said George Church, Ph.D., who is Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard University, leader of its Synthetic Biology Platform, and Professor of Genetics at Harvard Medical School. “We wanted to provide that side-by-side comparison to the biomedical research community.”

In a study published on 23 May in Nature Methods, the Wyss Institute team reports how it rigorously compared and ranked the most commonly used artificial Cas9 activators in different cell types from organisms including humans, mice and flies. The findings provide a valuable guide to researchers, allowing them to streamline their endeavors.

The team also included Wyss Core Faculty Member James Collins, Ph.D., who also is the Termeer Professor of Medical Engineering & Science and Professor of Biological Engineering at the Massachusetts Institute of Technology (MIT)’s Department of Biological Engineering and Norbert Perrimon, Ph.D., a Professor of Genetics at Harvard Medical School.

Read more