Toggle light / dark theme

FightAging! interviews Mantas from CellAge about their campaign on Lifespan.io / Life Extension Advocacy Foundation and talks about senolytics and synthetic biology.


I mentioned CellAge some weeks ago; a new entry to the collection of companies and research groups interested in developing the means to safely identify and remove senescent cells from old tissues. A few days later one of those companies, UNITY Biotechnology, announced a sizable $116 million venture round, which certainly put the field on the map for anyone who wasn’t paying attention up until that point. In contrast, CellAge are determinedly taking the non-profit route, and intend to make the progress they create freely available to the field. Why are senescent cells important? Because they are a cause of aging, and removing them is a narrowly focused form of rejuvenation, shown to restore function and extend healthy life in animal studies. An increasing number of senescent cells linger in our bodies as we age, secreting signals that harm tissue structures, produce chronic inflammation, and alter the behavior of nearby cells for the worse. Senescent cells also participate more directly in some disease processes, such as the growth of fatty deposits, weakening and blocking blood vessels, that takes place in atherosclerosis. By the time that senescent cells come to make up 1% of the cell population in an organ, their presence causes noticeable dysfunction and contributes significantly to the progression of all of the common age-related diseases.

This coming Monday, the CellAge team will be hosting an /r/futurology AMA event — the post is up already if you want add your own questions for the scientists involved. Earlier this week, the CellAge principals launched a crowdfunding campaign with Lifespan.io: they are seeking $40,000 with stretch goals and rewards beyond that to get started on their vision for senescent cell therapies. If you’ve ever wanted the chance to have a DNA promoter sequence named after you … well, here it is. This has certainly been a busy year for community fundraising in rejuvenation research: I imagine that things will heat up even more in the years ahead. The CellAge view of the field of senescent cell clearance is that the markers currently used to identify senescent cells are too crude and lacking in specificity.

Read more

We recently wrote an article about how we need to redefine what “nanotechnology” means in the context of looking for “nanotech” companies to invest it. When you can use synthetic biology and gene editing to change the way that bacteria function by genetically modifying them, the result are microscopic biological machines. These tiny biological machines sound a whole lot like the nanobots that we were promised which would go around doing cool things without even being visible to the human eye. Earlier this year we profiled three companies that we claimed were working on building nanobot factories that create designer organisms on demand. Let’s take a closer look at one of these companies called Ginkgo Bioworks.

ginkgo-bioworks-logo

Founded in 2008, Massachusetts based startup Ginkgo Bioworks has taken in a total of $154 million in funding so far with their latest $100 million Series C round closing in summer of this year. The Company refers to themselves as “the organism company” and their value proposition has attracted investment from a whole slew of investors who realize the potential of developing new organisms that can replace technology with biology. In their own words, Ginkgo Bioworks is doing “programming without a debugger, manufacturing without CAD, and construction without cranes” which requires a whole lot of intellectual firepower and may be why they have 5 founders:

Read more

Researchers have discovered a way to program cells to inhibit CRISPR-Cas9 activity. “Anti-CRISPR” proteins had previously been isolated from viruses that infect bacteria, but now University of Toronto and University of Massachusetts Medical School scientists report three families of proteins that turn off CRISPR systems specifically used for gene editing. The work, which appears December 15 in Cell, offers a new strategy to prevent CRISPR-Cas9 technology from making unwanted changes.

“Making CRISPR controllable allows you to have more layers of control on the system and to turn it on or off under certain conditions, such as where it works within a cell or at what point in time,” says lead author Alan Davidson, a phage biologist and bacteriologist at the University of Toronto. “The three anti-CRISPR proteins we’ve isolated seem to bind to different parts of the Cas9, and there are surely more out there.”

CRISPR inhibitors are a natural byproduct of the evolutionary arms race between viruses and bacteria. Bacteria use CRISPR-Cas complexes to target and cut up genetic material from invading viruses. In response, viruses have developed proteins that, upon infection, can quickly bind to a host bacterium’s CRISPR-Cas systems, thus nullifying their effects.

Read more

Senolytics meets Synthetic biology so come along and ask them anything!


Hey folks, We are excited to announce that the CellAge longform AMA opens Friday for questions and the CellAge team will answer them from Monday 11am PST/2pm EST/6pm GMT. We will update the link to the Futurology AMA once it is ready.

CellAge are using synthetic biology to create new biomarkers for senescent cell detection, developing a new therapy to remove senescent cells which drive the aging process using custom synthetic biology. Come along and ask them all about it.

#aging #crowdfundthecure

Read more

Creative Machines; however, are they truly without a built in bias due to their own creator/s?


Despite nature’s bewildering complexity, the driving force behind it is incredibly simple. ‘Survival of the fittest’ is an uncomplicated but brutally effective optimization strategy that has allowed life to solve complex problems, like vision and flight, and colonize the harshest of environments.

Researchers are now trying to harness this optimization process to find solutions to a host of science and engineering problems. The idea of using evolutionary principles in computation dates back to the 1950s, but it wasn’t until the 1960s that the idea really took off. By the 1980s the approach had crossed over from academic curiosities into real-world fields like engineering and economics.

Applying natural selection to computing

Evolutionary algorithms are numerous and diverse, but they all seek to replicate key features of biological evolution, such as natural selection, reproduction and mutation. Typically these methods rely on a kind of trial and error — a large population of potential solutions to a problem are randomly generated and tested against a so-called “fitness function.” This lets the system rank the solutions in order of how well they solve the problem.

The fourth Lifespan.io campaign and CellAge are using synthetic biology to create an accurate aging biomarker for senescent cells and a new therapy for precision targeting of those problem cells. Senescent cells are one of the processes of aging and this could change the way we age.


Lifespan.io is proud to present our fourth rejuvenation biotechnology project!

As we age our bodies accumulate damage in the form of dysfunctional cells that have entered a state called “senescence”, which secrete toxic signals that can lead to chronic inflammation, higher rates of cancer and additional aging-related conditions.

In order to address this CellAge, an Edinburgh based startup, has just launched a new Lifespan.io campaign to develop methods that will help researchers target, and eventually remove, these cells from the body and thereby assist in restoring it to youthful functionality.

Central to their project is the development of new synthetic DNA promoters which are specific to senescent cells, as promoters that are currently being used to track them, such as the p16 gene promoter, have various limitations. If successful, they will follow this up by validating gene therapies for senescent cell removal, initially for patients with progeroid syndromes, those who have undergone radiotherapy, and eventually those with age-related disease.

It is not often that a scientist walks the red carpet at a Silicon Valley party and has Morgan Freeman award them millions of dollars while Alicia Keys performs on stage and other A-listers rub shoulders with NASA astronauts.

But the guest list for the Breakthrough prize ceremony is intended to make it an occasion. At the fifth such event in California last night, a handful of the world’s top researchers left their labs behind for the limelight. Honoured for their work on black holes and string theory, DNA repair and rare diseases, and unfathomable modifications to Schrödinger’s equation, they went home to newly recharged bank accounts.

Founded by Yuri Milner, the billionaire tech investor, with Facebook’s Mark Zuckerberg and Google’s Sergey Brin, the Breakthrough prizes aim to right a perceived wrong: that scientists and engineers are not appreciated by society. With lucrative prizes and a lavish party dubbed “the Oscars of science”, Milner and his companions want to elevate scientists to rock star status.

Read more

The US Army Research Laboratory (ARL) are at an advanced stage of with their synthetic biology research. The work could see bacteria being used to send signals and sense in a way similar to computers, the advantage being that it could potentially provide a more intuitive sensory experience to a piece of tech, and bypass some of the pitfalls unique to electrical structures. The research also has application for new 3D printing materials.

Read more