Toggle light / dark theme

MIT engineers have developed a microfluidic device that replicates the neuromuscular junction—the vital connection where nerve meets muscle. The device, about the size of a U.S. quarter, contains a single muscle strip and a small set of motor neurons. Researchers can influence and observe the interactions between the two, within a realistic, three-dimensional matrix.

The researchers genetically modified the neurons in the device to respond to light. By shining light directly on the neurons, they can precisely stimulate these cells, which in turn send signals to excite the muscle fiber. The researchers also measured the force the muscle exerts within the device as it twitches or contracts in response.

The team’s results, published online today in Science Advances, may help scientists understand and identify drugs to treat amyotrophic lateral sclerosis (ALS), more commonly known as Lou Gehrig’s disease, as well as other neuromuscular-related conditions.

Read more

A universal cancer vaccine is on the horizon after scientists discovered how to rewire immune cells to fight any type of disease.

The potential new therapy involves injecting tiny particles of genetic code into the body which travel to the immune cells and teach them to recognise specific cancers.

Although scientists have shown previously that is it is possible to engineer immune cells outside the body so they can spot cancer it is the first time it has happened inside cells.

Read more

Nice.


When we think of synthetic biology, we often think of engineering a cell to give it some useful function. But SEED 2016 had quite a few speakers working outside of a biological cell. Some broke open cells to utilize just the cellular machinery to create “cell-free” systems. Others showed what could be done inside of the computer (in silico) to improve our understanding and prediction of synthetic gene networks. Here, we’re highlighting SEED speakers who showed how both of these approaches can advance synthetic biology.

Cell-free synthetic biology

Roy Bar-Ziv gave the first keynote at SEED 2016. His group at the Weissman Institute has made tremendous progress toward using cell-free expression that can mimic the behavior of real cells. Over the last 12 years they developed their ‘artificial cells’ using microfluidics and DNA arrayed on 2D substrates as DNA brushes. Each spot of DNA can be programmed the same as DNA in cells, and unlike other cell-free expression setups the microfluidics allows for dynamics.

Tempus fugit. I’m just about old enough to remember a time in which 2020 was the distant future of science fiction novels, too far away to be thinking about in concrete terms, a foreign and fantastical land in which anything might happen. Several anythings did in fact happen, such as the internet, and the ongoing revolution in biotechnology that has transformed the laboratory world but leaks into clinics only all too slowly. Here we are, however, close enough to be making plans and figuring out what we expect to be doing when the third decade of the 21st century gets underway. The fantastical becomes the mundane. We don’t yet have regeneration of organs and limbs, or therapies to greatly extend life, but for these and many other staples of golden age science fiction, the scientific community has come close enough to be able to talk in detail about the roads to achieving these goals.

Of all the things that researchers might achieve with biotechnology in the near future, control over aging is by far the most important. Aging is the greatest cause of death and suffering in the world, and none of us are getting any younger. That may change, however. SENS, the Strategies for Engineered Negligible Senescence, is a synthesis of the scientific view of aging as an accumulation of specific forms of cell and tissue damage, pulling in a century of evidence from many diverse areas of medical science to support this conclusion. Aging happens because the normal operation of our cellular biochemistry produces damage, wear and tear at the level of molecules and molecular structures, and some of that damage accumulates to cause failure of tissues and organs, and ultimately death.

Read more

Philadelphia, PA, USA / Mexico City, Mexico — Bioquark, Inc., (www.bioquark.com) a life sciences company focused on the development of novel bioproducts for complex regeneration, disease reversion, and aging, and RegenerAge SAPI de CV, (www.regenerage.clinic/en/) a clinical company focused on translational therapeutic applications of a range of regenerative and rejuvenation healthcare interventions, have announced a collaboration to focus on novel combinatorial approaches in human disease and wellness. SGR-Especializada (http://www.sgr-especializada.com/), regulatory experts in the Latin American healthcare market, assisted in the relationship.

regenerage

“We are very excited about this collaboration with RegenerAge SAPI de CV,” said Ira S. Pastor, CEO, Bioquark Inc. “The natural synergy of our cellular and biologic to applications of regenerative and rejuvenative medicine will make for novel and transformational opportunities in a range of degenerative disorders.”

As we close in on $7 trillion in total annual health care expenditures around the globe ($1 trillion spent on pharmaceutical products; $200 billion on new R&D), we are simultaneously witnessing a paradoxical rise in the prevalence of all chronic degenerative diseases responsible for human suffering and death.

With the emergence of such trends including: personalization of medicine on an “n-of-1” basis, adaptive clinical design, globalization of health care training, compassionate use legislative initiatives for experimental therapies, wider acceptance of complementary medical technologies, and the growth of international medical travel, patients and clinicians are more than ever before, exploring the ability to access the therapies of tomorrow, today.

recovering patient

The estimate of the current market size for procedural medical travel, defined by medical travelers who travel across international borders for the purpose of receiving medical care, is in the range of US $40–55 billion.

Additionally, major clinical trial gaps currently exist across all therapeutic segments that are responsible for human suffering and death. Cancer is one prime example. As a leading cause of morbidity and mortality worldwide for many decades, today there are approximately 14 million new cases diagnosed each year, with over 8 million cancer related deaths annually. It is estimated that less than 5% of these patients, take the initiative to participate in any available clinical studies.

“We look forward to working closely with Bioquark Inc. on this exciting initiative,” said Dr. Joel Osorio, Chief of Clinical Development RegenerAge SAPI de CV. “The ability to merge cellular and biologic approaches represents the next step in achieving comprehensive regeneration and disease reversion events in a range of chronic diseases responsible for human suffering and death.”

bioquarklogo

About Bioquark, Inc.
Bioquark Inc. is focused on the development of natural biologic based products, services, and technologies, with the goal of curing a wide range of diseases, as well as effecting complex regeneration. Bioquark is developing both biological pharmaceutical candidates, as well as products for the global consumer health and wellness market segments.

About RegenerAge SAPI de CV

RegenerAge SAPI de CV is a novel clinical company focused on translational therapeutic applications, as well as expedited, experimental access for “no option” patients, to a novel range of regenerative and reparative biomedical products and services, with the goal of reducing human degeneration, suffering, and death.

A new method for medicine.


Imagine a cross between one of those multi-color retractable pens and an epi-pen. But instead of colors, the device would have different medications. Now combine this with a tiny, droplet-sized sweatshop full of obedient single-celled organisms genetically engineered to produce those medications, and you’ve got what a team from MIT just published in Nature Communications: A new project, with funding from DARPA, that has demonstrated the ability to synthesize multiple medications on-demand and as-needed using yeast. The discovery could soon revolutionize our ability to deliver medicine after natural disasters or to remote locations.

Let’s stick with the metaphor of an epi-pen. First, the user presses the actuator, which mixes a chemical trigger into a culture of engineered Pichia pastoris cells. Upon exposure to certain chemical triggers, the cells are programmed to produce a protein: in the report, the team used estrogen β-estradiol, which caused the cells to express recombinant human growth hormone (rHGH), and also methanol, which induced the same culture of yeast to make interferon. By controlling the concentration of the chemical trigger and the population of P. pastoris, the team demonstrated that they could make their device produce a dose of either interferon or rHGH on command. To switch between products, they just pushed another button on the microbioreactor, which flushes out the cell culture with clean, sterile fluid.

“…rapid and switchable production of two biologics from a single yeast strain as specified by the operator.” –Lu, Ram et al

AWESOME.


New UCLA research suggests that a gene-based immunotherapy that has shown promising results against cancer could also be used against HIV, the virus that causes AIDS.

In a study to be published in an August issue of the bi-monthly peer-reviewed Journal of Virology, researchers with the UCLA AIDS Institute and Center for AIDS Research found that recently discovered potent antibodies can be used to generate chimeric antigen receptors, or CARs, that can be used to kill cells infected with HIV-1.

CARs are artificially created immune T-cells that have been engineered to produce receptors on their surface that are designed to target and kill specific cells containing viruses or tumor proteins. The use of these chimeric receptors is currently the focus of gene immunotherapy against cancer, but they could also be used to create a strong immune response against HIV, said Dr. Otto Yang, professor of medicine in the division of infectious diseases at the David Geffen School of Medicine at UCLA and the study’s corresponding author.

Read more

A Yale research team has designed a system to modify multiple genes in the genome simultaneously, while also minimizing unintended effects. The gene-editing “toolbox” provides a user-friendly solution that scientists can apply to research on cancer and other disciplines, according to a news release from Yale.

The study was published on July 26 in Nucleic Acids Research.

The news release states that, with modern genetic engineering techniques, researchers can edit genes in experiments. This allows researchers to study important disease-related genes and may ultimately allow them to treat genetic diseases by making edits in specific sites of the human genome. However, progress has been hampered by several challenges, including the editing of unintended sites — referred to as off-target effects.

Read more

Hmmm.


We can rebuild him; we have the technology—but Americans question if we should in a new survey designed to assess attitudes to modern biotechnology advances.

A new report, based on a survey of 4,700 U.S. adults coming out of the Pew Research Center, looked at a range of views on certain advances in biology, with opinions split on the ethics and long-term problems associated with enhancing human capacity.

When asked about gene editing, the majority of those surveyed, 68%, said they would be “very” or “somewhat” worried about its implications.