Toggle light / dark theme

A team of researchers from the University of Lille, CNRS, Centrale Lille, University of Artois, in France, and Keele University in the U.K has developed a way to produce ethane from methane using a photochemical looping strategy. In their paper published in the journal Nature Energy, the group describes their process. Fumiaki Amano with the University of Kitakyushu in Japan has published a News & Views piece on the work done by the team in the same journal issue.

Over the past several years, has become important for the production of fuels and other chemicals. But due to its stability, converting methane to desired products requires high temperatures and results in less-than-desired selectivity. Developing a way to carry out such conversions without the need for energy intensive heat production has been a goal of chemists in the field for several years. Prior research has suggested that methane coupling is an attractive option due to the ease with which it can be dehydrogenated to ethylene. In this new effort, the researchers followed up on such suggestions, and in so doing, have developed a way to produce ethane from methane that overcomes prior problems.

Amano suggests the success factor used by the researchers centered around the development of a three-part nanocomposite material—by adding phosphotungstic acid and silver cations to a traditional TiO2 photocatalyst. The resulting Ag–HPW/TiO2 nanocomposites induced methane coupling which resulted in the production of ethane—and also small amounts of propane and CO2. The final result was a two-stage looping process that was based on photochemical conversions. Amano notes that the process resulted in silver cation reduction to a metallic, which was followed up by reoxidization of a metallic silver species using oxygen that was irradiated with ultraviolet light. He also points out that the HPW coating that was used on the particles was a major factor in improving selectivity, and suggests that the looping redox cycle is similar in some ways to the reactions that happen in rechargeable batteries.

More portable, fully wireless smart home setups. Lower power wearables. Batteryless smart devices. These could all be made possible thanks to a new ultra-low power Wi-Fi radio developed by electrical engineers at the University of California San Diego.

The device, which is housed in a chip smaller than a grain of rice, enables Internet of Things (IoT) devices to communicate with existing Wi-Fi networks using 5,000 times less than today’s Wi-Fi radios. It consumes just 28 microwatts of power. And it does so while transmitting data at a rate of 2 megabits per second (a connection fast enough to stream music and most YouTube videos) over a range of up to 21 meters.

The team will present their work at the ISSCC 2020 conference Feb. 16 to 20 in San Francisco.

April 2020


Field programmable gate arrays, FPGAs for short, are flexibly programmable computer chips that are considered very secure components in many applications. In a joint research project, scientists from the Horst Görtz Institute for IT Security at Ruhr-Universität Bochum and from Max Planck Institute for Security and Privacy have now discovered that a critical vulnerability is hidden in these chips. They called the security bug “Starbleed.” Attackers can gain complete control over the chips and their functionalities via the vulnerability. Since the bug is integrated into the hardware, the security risk can only be removed by replacing the chips. The manufacturer of the FPGAs has been informed by the researchers and has already reacted.

The researchers will present the results of their work at the 29th Usenix Security Symposium to be held in August 2020 in Boston, Massachusetts, U.S… The has been available for download on the Usenix website since April 15, 2020.

Focus on the bitstream

Micro-combs — optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts, but in an integrated footprint. They have enabled breakthroughs in many fields including spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology and ultrahigh capacity data transmission. Here, by using a powerful class of micro-comb called soliton crystals, we achieve ultra-high data transmission over 75 km of standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits s−1 using the telecommunications C-band at 1550 nm with a spectral efficiency of 10.4 bits s−1 Hz−1. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with an extremely low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format (64 QAM — quadrature amplitude modulated). This work demonstrates the capability of optical micro-combs to perform in demanding and practical optical communications networks.

CAPE CANAVERAL, Fla. (AP) — The two astronauts who will test drive SpaceX’s brand new rocketship are classmates and friends, veteran spacefliers married to veteran spacefliers, and fathers of young sons.

Together, they will end a nine-year drought for NASA when they blast into orbit next week from Florida’s Kennedy Space Center.

Retired Marine Col. Doug Hurley will be in charge of launch and landing, a fitting assignment for the pilot of NASA’s last space shuttle flight.

Education Saturday with Space Time.


This episode of space time is brought to you by the information flowing through an impossibly complex network of quantum entanglement, that just happens to mutually agree that you and I exist inside it. Oh, and Schrodinger’s cat is in here too.

In quantum world things are routinely in multiple states at once – what we call a “superposition” of states. But in the classical world of large scales, things are either this or that. The famous thought experiment is Schrodinger’s cat – in which a cat is in an opaque box with a vial of deadly poison that’s released on the radioactive decay of an atom. Quantum mechanics tells us that the atom’sfunction can be in a superposition of states – simultaneously decayed or not decayed. So is the cat’sfunction also in a superposition of both dead and alive.

If you’re interested in superlongevity and superintelligence, then I have a book to recommend., by Sonia Contera, is a book about the intersection of biotech and nanotech. Interesting and well written for the layman, the book covers some of the latest developments in nanotechnology as it applies to biological matters. Although there are many topics, I was primarily interested in the DNA nanobots, DNA origami, and the protein nanotechnology sections. My interest is piqued in these arenas due to my expectation that DNA nanobots and protein nanobots, as well as complex self-assembled custom nanostructures, are going to be key to some of the longevity technologies and some of the possible substrates for mind uploading that are key to superlongevity and superintelligence. There are also sections in the book on 3D bioprinted organs — progress and possibilities, as well as difficulties.

There is even a section that clearly was written specifically to address a discussion that has engaged my friends, Dinorah Delfin and Dan Faggella. The title is:

FUTURE DEVICES: QUANTUM PHYSICS MEETS BIOLOGY MEETS NANOTECHNOLOGY

Now, some might be tempted to consider that particular combination to be “woo woo”, however, please keep in mind the author’s credentials. Sonia Contera is a professor of biological physics in the Department of Physics at the University of Oxford.


Increasingly, scientists are gaining control over matter at the nanometer scale. Spearheaded by physical scientists operating at the interfaces of physics and biology, advances in nanoscience and technology are transforming how people think about life and treat human health.

I recently interviewed post-humanist Dr Francesca Ferrando on the relationship between the global transhumanist and post-humanist movements – might be of interest!

Blown away by the support since I launched my YouTube channel focused on futurist/transhumanist topics a couple of months back & have decided to invest in better equipment to boost the quality. In the meantime very grateful for any subscribers 😊.


I interview Dr Francesca Ferrando, founder of the Global Posthuman Network and Assistant Professor of Philosophy at New York University. Dr Ferrando explains why she identifies as a posthumanist and the relationship between the posthumanist and transhumanist movements.