Toggle light / dark theme

All those numbers seem incalculably abstract but, according to the moral philosopher William MacAskill, they should command our attention. He is a proponent of what’s known as longtermism – the view that the deep future is something we have to address now. How long we last as a species and what kind of state of wellbeing we achieve, says MacAskill, may have a lot to do with what decisions we make and actions we take at the moment and in the foreseeable future.

That, in a nutshell, is the thesis of his new book, What We Owe the Future: A Million-Year View. The Dutch historian and writer Rutger Bregman calls the book’s publication “a monumental event”, while the US neuroscientist Sam Harris says that “no living philosopher has had a greater impact” upon his ethics.

We tend to think of moral philosophers as whiskery sages, but MacAskill is a youthful 35 and a disarmingly informal character in person, or rather on a Zoom call from San Francisco, where he is promoting the book.

A collection of photos of genetically unrelated look-alikes, along with DNA analysis, revealed that strong facial similarity is associated with shared genetic variants. The work appears August 23 in the journal Cell Reports.

“Our study provides a rare insight into human likeness by showing that people with extreme look-alike faces share common genotypes, whereas they are discordant at the epigenome and microbiome levels,” says senior author Manel Esteller of the Josep Carreras Leukemia Research Institute in Barcelona, Spain. “Genomics clusters them together, and the rest sets them apart.”

The number of people identified online as virtual twins or doubles who are genetically unrelated has increased due to the expansion of the World Wide Web and the possibility of exchanging pictures of humans across the planet. In the new study, Esteller and his team set out to characterize, on a , random human beings that objectively share facial features.

Underwater robots are being widely used as tools in a variety of marine tasks. The RobDact is one such bionic underwater vehicle, inspired by a fish called Dactylopteridae known for its enlarged pectoral fins. A research team has combined computational fluid dynamics and a force measurement experiment to study the RobDact, creating an accurate hydrodynamic model of the RobDact that allows them to better control the vehicle.

The team published their findings in Cyborg and Bionic Systems on May 31, 2022.

Underwater robots are now used for many marine tasks, including in the fishery industry, underwater exploration, and mapping. Most of the traditional underwater robots are driven by a propeller, which is effective for cruising in at a stable speed. However, underwater robots often need to be able to move or hover at low speeds in turbulent waters, while performing a specific task. It is difficult for the propeller to move the robot in these conditions. Another factor when an is moving at low speeds in unstable flowing waters is the propeller’s “twitching” movement. This twitching generates unpredictable fluid pulses that reduce the robot’s efficiency.

According to recent Baycrest research, adults without dementia risk factors like smoking, diabetes, or hearing loss had brain health comparable to that of those who are 10 to 20 years younger than them. According to the research, only one dementia risk factor can age a person’s cognition by up to three years.

“Our results suggest lifestyle factors may be more important than age in determining someone’s level of cognitive functioning. This is great news since there’s a lot you can do to modify these factors, such as managing diabetes, addressing hearing loss, and getting the support you need to quit smoking,” says Dr. Annalise LaPlume, Postdoctoral Fellow at Baycrest’s Rotman Research Institute (RRI) and the study’s lead author.

The research is one of the first to look at lifestyle risk factors for dementia across the entire lifespan.

Many heart problems, including tachycardia and fibrillation, mainly originate from imperfections in the way electric currents propagate through the heart. Unfortunately, it is difficult for doctors to study these imperfections. This is because measuring these currents involves highly invasive procedures and exposure to X-ray radiation.

Luckily, there are other options. For example, magnetocardiography (MCG) is a promising alternative approach to measuring heart currents indirectly. The technique involves sensing minute changes in the magnetic field near the heart caused by cardiac currents. This can be done in a completely contactless manner. To this end, various types of quantum sensors suitable for this purpose have been developed. However, their spatial resolution is limited to centimeter scales, which is not good enough to detect cardiac currents that propagate at millimeter scales. Furthermore, each of these sensors has a fair share of its practical limitations, such as size and operating temperature.

In a new study published today (August 23, 2022) in Communications Physics, a team of scientists developed a novel setup to perform MCG at higher resolutions. Their approach is based on a diamond quantum sensor comprising nitrogen vacancies, which act as special magnetic “centers” that are sensitive to the weak magnetic fields produced by heart currents. The researchers were led by Associate Professor Takayuki Iwasaki of Tokyo Institute of Technology (Tokyo Tech), Japan.

New technology could divert problem plastics from landfills and convert them into fuel sources.

A plastics recycling innovation that does more with less simultaneously increases conversion to useful products while using less of the precious metal ruthenium. It will be presented today (August 22, 2022) at the American Chemical Society fall meeting in Chicago.

“The key discovery we report is the very low metal load,” said Pacific Northwest National Laboratory (PNNL) chemist Janos Szanyi, who led the research team. “This makes the catalyst much cheaper.”

In recent years, roboticists have developed a wide variety of robotic systems with different body structures and capabilities. Most of these robots are either made of hard materials, such as metals, or soft materials, such as silicon and rubbery materials.

Researchers at Hong Kong University (HKU) and Lawrence Berkeley National Laboratory have recently created Aquabots, a new class of soft robots that are predominantly made of liquids. As most are predominantly made up of water or other , the new robots, introduced in a paper published in ACS Nano, could have highly valuable biomedical and environmental applications.

“We have been engaged in the development of adaptive interfacial assemblies of materials at the oil-water and water-water interface using nanoparticles and polyelectrolytes,” Ho Cheung (Anderson) Shum, Thomas P. Russell, and Shipei Zhu told TechXplore via email. “Our idea was to assemble the materials that the interface and the assemblies lock in the shapes of the liquids. The shapes are dictated using external forces to generate arbitrary shapes or to use all-liquid 3D printing to be able to spatially organize the assemblies.”

Lastly, there is the concern that this is all whimsically unimportant, or worse, an obtuse disregard for more prosaic societal concerns. Some people may find debates of this sort to be pedantic and even snobbish, given the justified concern that advanced futuristic technologies are likely to benefit wealthy elites long before they trickle down to the masses. Worse, some people may expect that such technologies are likely impossible and that such metaphysical navelgazing is an ivory tower distraction in a world of real problems and challenges. To that reaction I say the importance is not necessarily in determining the prospects of technological and medical marvels that reside far in the future, if ever. The more relevant issue, and the reason I have committed so much of my life to contemplating and writing about these questions, is that we profoundly desire the most accurate model possible of reality and understanding of the human condition. Ultimately, we want to understand ourselves as conscious beings in the universe and to understand the nature of our existence. That is the real issue here, at least for me.

About the author

Keith Wiley is on the board of Carboncopies.org and is a fellow with The Brain Preservation Foundation. He holds a PhD in computer science from the University of New Mexico and works as a data scientist in Seattle, Washington. His book, A Taxonomy and Metaphysics of Mind-Uploading, is available on Amazon (https://www.amazon.com/dp/0692279849?tag=lifeboatfound-20?tag=lifeboatfound-20). His other writings, interviews, and videos about mind uploading are available on his website at http://keithwiley.com and elsewhere on the web.