Menu

Blog

Page 4801

Aug 6, 2022

Turbulence-Surfing Plankton Can Double Their Speed

Posted by in category: food

Simulations indicate that plankton can gain quicker access to food by riding ascending turbulent ocean currents.

Turbulence can be a nuisance for planes and boats, but for marine plankton, researchers have now shown that turbulence can be a boon. In simulations, they found that plankton that can hitch rides on the right turbulent ocean plumes can double their swimming speeds [1]. The researchers say that this ability could help a variety of tiny ocean organisms quickly rise to the water’s surface to reach food at night before returning to its murky depths to escape daytime predators.

Plankton consist of a wide variety of small and microscopic organisms that drift in the ocean. Unable to propel themselves very effectively, they travel by riding ocean currents. For example, the planktonic larvae of the Chesapeake blue crab ride vertical and horizontal water currents when migrating toward the shore and up an estuary.

Aug 6, 2022

Addressing WWW Production in Particle Collisions

Posted by in category: particle physics

The ATLAS Collaboration has detected triple W-boson production—a rare event that could eventually offer signs of new physics.


A new model suggests that lattice defects are responsible for the way some semiconductors become harder under illumination.

Aug 6, 2022

Semiconductors in the Spotlight

Posted by in categories: electronics, materials

A new model suggests that lattice defects are responsible for the way some semiconductors become harder under illumination.

Understanding how semiconductors respond to illumination has been crucial to the development of photovoltaics and optical sensors. But some light-induced behaviors have been less thoroughly investigated. For example, when some semiconductors are illuminated, their mechanical properties can change drastically, a phenomenon known as photoelasticity. Photoelastic materials could be useful in the development of flexible electronics, but researchers do not understand in detail the mechanism behind the effect. Now, based on experiments and simulations, Rafael Jaramillo of the Massachusetts Institute of Technology and colleagues present a new theoretical framework that explains photoelasticity in terms of lattice defects [1].

The researchers used a diamond-tipped probe to make nanometer-scale indentations in samples of zinc oxide, zinc sulfide, and cadmium sulfide—first in the dark, and then under a range of visible and ultraviolet wavelengths. All three materials hardened to varying degrees when illuminated, with cadmium sulfide showing the largest and most consistent response. For every sample, the effect increased as the photon energy increased toward the material’s band gap.

Aug 6, 2022

Long-Baseline Neutrino Experiments March On

Posted by in categories: biotech/medical, nanotechnology

Long-baseline neutrino experiments are paving the way for the solution of two outstanding puzzles in neutrino physics—mass ordering and charge-parity violation.


Nanoparticle “backpack” repairs damaged stem cells. Stem cells that might save a baby’s life and be utilized to treat illnesses like lymphoma and leukemia are found in the umbilical cord of newborns. Because of this, many new parents decide to preserve (“bank”) the umbilical cord blood’s abundant s.

Aug 6, 2022

New Invention Restores Life-Saving Cells

Posted by in categories: bioengineering, biotech/medical, nanotechnology

Stem cells that might save a baby’s life and be utilized to treat illnesses like lymphoma and leukemia are found in the umbilical cord of newborns. Because of this, many new parents decide to preserve (“bank”) the umbilical cord blood’s abundant stem cells for their child. However, since gestational diabetes destroys stem cells and makes them useless, parents are not given this choice in the 6 to 15% of pregnancies who are impacted by the illness.

In a study that will be published in the journal Communications Biology, bioengineers at the University of Notre Dame have now shown that a new approach may heal the injured stem cells and allow them to once again grow new tissues.

Specially-created nanoparticles are the key component of this new strategy. Each spherical nanoparticle may store medication and deliver it specifically to the stem cells by attaching it to the surface of the cells. These nanoparticles are about 150 nanometers in diameter or about a fourth of the size of a red blood cell. The particles deliver the medication gradually as a result of their unique tuning, which makes them very effective even at very low dosages.

Aug 6, 2022

Scientists Find a Key Brain Difference Between Primates and Other Animals

Posted by in category: neuroscience

A multinational research team has now been able to increase their understanding of species-specific variations in the architecture of cortical neurons thanks to high-resolution microscopy.

Researchers from the Developmental Neurobiology research group at Ruhr-Universität Bochum, led by Professor Petra Wahle, have demonstrated that primates and non-primates differ in an important aspect of their architecture: the origin of the axon, which is the process responsible for the transmission of electrical signals known as action potentials. The results were recently published in the journal eLife.

Aug 6, 2022

Neocortical pyramidal neurons with axons emerging from dendrites are frequent in non-primates, but rare in monkey and human

Posted by in categories: chemistry, neuroscience

Archived histological material from tracing studies, immunohistochemistry, and Golgi impregnations allowed to discover a so far unrecognized structural difference, potentially of functional importance, between neocortical pyramidal neurons of rodent, carnivore, and ungulate as compared to monkey and man.

Aug 6, 2022

Friends of NASA

Posted by in category: nuclear energy

Learn More.

Friends of NASA

Continue reading “Friends of NASA” »

Aug 6, 2022

The First Small Modular Nuclear Reactor Was Just Approved by US Regulators

Posted by in category: nuclear energy

While some SMRs under development rely on exotic new designs that use molten uranium or thorium salts as a fuel, the NuScale reactor, which has been named VOYGR, is not dramatically different from traditional full-scale ones. It is based on a design developed at Oregon State University in the early 2000s called the “Multi-Application Small Light Water Reactor.”

The design consists of a 76-foot-tall, 15-foot-wide cylindrical containment vessel that houses the reactor. Water is passed over a series of uranium fuel rods that generate heat through fission reactions. The heated water then rises up towards steam generators, which use the heat from the water to produce superheated steam. This is then used to drive a turbine that generates electricity.

Each module is designed to generate 50 megawatts of energy, but the company plans to combine up to 12 SMRs to achieve similar outputs to conventional nuclear plants. The SMRs come with novel safety features designed to prevent the kind of disasters that have hardened public opinion against nuclear power.

Aug 6, 2022

Generation of nanoscopic membrane curvature for membrane trafficking

Posted by in category: futurism

The generation of membrane curvature is essential for the formation of membrane tubules, sheets and vesicles, and hence, underlies membrane trafficking events. Various protein-based mechanisms function in membrane bending, and these appear to be organized in time and space by protein coats, including clathrin, caveolar coat complex, and COPI and COPII coats.