Toggle light / dark theme

A new technique employing monochromatic light improves the study of internal structures in materials affected by light scattering, enabling detailed observation of particle concentrations.

When driving through a bank of fog, car headlights are only moderately helpful since the light is scattered by the water particles suspended in the air. A similar situation occurs when trying to observe the inside of a drop of milk in water or the internal structure of an opal gem with white light. In these cases, multiple light scattering effects prevent examination of the interior.

Now, a team of researchers at Johannes Gutenberg University Mainz (JGU) and Heinrich Heine University Düsseldorf (HHU) has overcome this challenge and developed a new method to study the interior of a crystalline drop.

https://www.eurekalert.org/news-releases/1065953

Researchers have explored a fascinating cooling phenomenon within halide perovskite-based “dots-in-crystal” materials, uncovering both their promise and challenges.

In a groundbreaking study, scientists from Chiba University investigated the potential of solid-state optical cooling through perovskite quantum dots. Central to their research was anti-Stokes photoluminescence, a rare process where materials emit photons with higher energy than those absorbed. This innovative approach could transform cooling technology, offering a path to more efficient, energy-saving solutions. Their work not only highlights the immense promise of this technique but also reveals key limitations that pave the way for further advancements in the field.

In space, astronauts are exposed to extreme stressors our bodies don’t experience on Earth. Microgravity, higher radiation, and a high workload can impact cognitive performance. To find out which cognitive domains are affected by spaceflight, researchers analyzed data from 25 professional astronauts. They found that while on the ISS, astronauts took longer to perform tasks concerned with processing speed, working memory, and attention, but that a six-month stay in space did not result in lasting cognitive impairment once crews returned to Earth.

A stay in space exerts extreme pressures on the human body. Astronauts’ bodies and brains are impacted by radiation, altered gravity, challenging working conditions, and sleep loss – all of which could compromise cognitive functioning. At the same time, they are required to perform complex tasks, and minor mistakes can have devastating consequences.

Little is known, however, about whether astronauts’ cognitive performance changes while in space. Now, working with 25 astronauts who spent an average of six month on the International Space Station (ISS), researchers in the US have examined changes in a wide range of cognitive performance domains. This dataset makes up the largest sample of cognitive performance data from professional astronauts published to date.