Toggle light / dark theme

A cancer therapy that prompts the body’s immune defenses against viruses and bacteria to attack tumors can make patients more vulnerable to heart attack and stroke. A possible explanation for this side effect is that the treatment interferes with immune regulation in the heart’s largest blood vessels, a new study suggests.

Led by researchers at NYU Langone Health and its Perlmutter Cancer Center, the new work focused on a potent class of cancer-fighting drugs called . These medications work by blocking molecules embedded on the surface of cells—immune checkpoints—which normally serve as “brake pedals” that prevent excess immune activity, or inflammation. Some tumors are known to hijack these checkpoints to weaken the body’s defenses, so by blocking the checkpoints, the treatments enable the to kill .

However, this treatment type may also trigger damaging levels of inflammation in the heart, brain, stomach, and other organs, the researchers say. For example, past studies have shown that about 10% of those with atherosclerosis, the buildup of hardened fatty deposits (plaques) within artery walls, have a heart attack or stroke following . However, the specific mechanisms behind this issue had until now remained unclear.

Cure-Focused Diabetes Research — Michael Burton & Prof. Matthias von Herrath — Diabetes Research Institute Foundation.


Michael J. Burton is the CEO of the Diabetes Research Institute Foundation (https://diabetesresearch.org/), a philanthropic organization which funds the Diabetes Research Institute, one of the largest and most comprehensive research centers dedicated to curing diabetes.

A passionate nonprofit executive, Michael has more than 30 years of experience in leading high-impact philanthropic programs and cultivating strategic relationships to secure transformative funding. Prior to assuming the role of CEO at DRIF, Michael advanced the missions of some of the nation’s most dynamic and trusted institutions including Princeton University, The Pew Charitable Trusts and the American Association for Cancer Research (AACR).

Summary: Researchers identified specific plant compounds that provide antioxidant and neuroprotective effects, contributing to brain health beyond basic nutrition. By analyzing plant-based foods like lemon balm, sage, and elderberry, scientists linked compounds such as phenolics and terpenes to benefits like reducing oxidative stress and scavenging harmful reactive species.

Quercetin-rich foods, such as Queen Garnet plum and clove, showed strong potential to prevent neuron-like cell damage. This study sheds light on how plant-based diets and supplements could support brain health and manage neuroinflammation-related conditions.

Unveiling Quantum Scars: A Window into Chaos in Graphene Quantum Dots.

In the realm of quantum physics, certain phenomena challenge our understanding of chaos and order.


Patterns in chaos have been proven, in the incredibly tiny quantum realm, by an international team co-led by UC Santa Cruz physicist Jairo Velasco, Jr. In a new paper published on November 27 in Nature, the researchers detail an experiment that confirms a theory first put forth 40 years ago stating that electrons confined in quantum space would move along common paths rather than producing a chaotic jumble of trajectories.

Electrons exhibit both particle and wave-like properties—they don’t simply roll like a ball. Electrons behave in ways that are often counterintuitive, and under certain conditions, their waves can interfere with each other in a way that concentrates their movement into certain patterns. The physicists call these common paths “unique closed orbits.”

Researchers have successfully developed a supramolecular fluorophore nanocomposite fabrication technology using nanomaterials and constructed a sustainable solar organic biohydrogen production system.

The research team used the good nanosurface adsorption properties of tannic acid-based metal-polyphenol polymers to control the and optical properties of fluorescent dyes while also identifying the photoexcitation and electron transfer mechanisms. Based on these findings, he implemented a solar-based biohydrogen production system using bacteria with hydrogenase enzymes.

The findings are published in the journal Angewandte Chemie International Edition. The joint research was led by Professor Hyojung Cha at the Department of Hydrogen and Renewable Energy, Kyungpook National University and Professor Chiyoung Park at the Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology.

WASHINGTON — Varda Space Industries secured a $48 million contract from the U.S. Air Force Research Laboratory to test military payloads on the company’s reentry capsules.

A California-based startup focused on in-space manufacturing, Varda Space developed a factory-in-orbit spacecraft — a compact, 120-kilogram satellite engineered to produce high-value materials such as pharmaceuticals in zero-gravity conditions. The materials are returned to Earth in a capsule built with advanced thermal protection materials developed by NASA to withstand reentry.

The four-year deal with AFRL, announced on Nov. 26, leverages Varda’s W-Series reentry capsules as platforms to test payloads at hypersonic speeds. The spacecraft are built on Rocket Lab’s Photon satellite bus.

The Armenians, a population in Western Asia historically native to the Armenian Highlands, were long thought to be descendants of Phrygian settlers from the Balkans. This theory, rooted primarily in the writings of the Greek historian Herodotus, stemmed from his observation that Armenians serving in the Persian army were armed in a manner similar to the Phrygians. Linguists have also bolstered this theory, noting linguistic connections between the Armenian language and the Thraco-Phrygian subgroup of Indo-European languages.

But the first whole-genome study is challenging this long-held belief, revealing no significant genetic link between Armenians and the populations in the Balkan region. The study compares newly generated modern Armenian genomes and published genetic data of ancient individuals from the Armenian highlands with both modern and ancient genomes from the Balkans.