Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Leadership Skills: Managing AI Agents vs. Humans

Leadership quality has a significant impact on firm productivity and can even affect national prosperity, but measuring individual leadership skills is difficult. Existing methods require observing prospective leaders working with multiple randomly assigned groups, an undertaking that can be both logistically complex and expensive.

Permanent retention of exceptional trees can improve ecosystem integrity in managed forests

Even-aged forest management is geared towards timber production with ecosystem health as a lesser consideration. This creates a dichotomy where forests are treated either as plantations or reserves. Uneven-aged management can bring compromise to conflicting land uses by reducing ecosystem impacts while still allowing timber extraction. Whereas selection forestry focuses on which trees are taken, retention forestry focuses on protecting features that will remain after logging. These biological legacies provide ecosystem continuity.

Retained trees are often chosen based on their habitat value. Snags and living trees that are diseased, damaged, or dying provide cavities, decaying wood, and other microhabitats for a diversity of biota. Defects that make high-quality habitat trees tend to cause the collapse of large and , so it’s important to designate healthy recruitment trees for the future. Retention forestry that focuses only on habitat trees may be inconsistent with the goals of long-term carbon storage and ecosystem resilience.

An article just published in Forest Ecology and Management explores the idea of “exceptional trees” and why we might consider choosing a subset of the most robust trees for permanent retention in managed forests. We present methods for precisely estimating aboveground biomass across the landscape and assess the contribution of exceptional trees to biomass and productivity. Our study focuses on Sequoia sempervirens (redwood) in California’s Demonstration State Forests.

Inflammasome Molecular Insights in Autoimmune Diseases

Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.

New System Lets Multiple Users Share a Single Quantum Computer

PRESS RELEASE — Quantum computers have operated under a significant limitation: they can run only one program at a time. These million-dollar machines demand exclusive use even for the smallest tasks, leaving much of their expensive and fast-running hardware idle and forcing researchers to endure long queues.

Columbia Engineering researchers have developed HyperQ, a novel system that enables multiple users to share a single quantum computer simultaneously through isolated quantum virtual machines (qVMs). This key development brings quantum computing closer to real-world usability—more practical, efficient, and broadly accessible.

“HyperQ brings cloud-style virtualization to quantum computing,” said Jason Nieh, professor of computer science at Columbia Engineering and co-director of the Software Systems Laboratory. “It lets a single machine run multiple programs at once—no interference, no waiting in line.”

Record financing for Proxima Fusion

The Munich-based start-up Proxima Fusion, a spin-out from the Max Planck Institute for Plasma Physics, has raised €130 million in capital. The company plans to use the funds to finance the development of the world’s first stellarator-based fusion power plant, which is scheduled to be built in the 2030s. The investment represents the largest private financing round in the field of fusion energy in Europe to date. Proxima Fusion now has a total of more than €185 million in public and private funding at its disposal.