Toggle light / dark theme

Quantum information processing is a field that relies on the entanglement of multiple photons to process vast amounts of information. However, creating multiphoton entanglement is a challenging task. Traditional methods either use quantum nonlinear optical processes, which are inefficient for large numbers of photons, or linear beam-splitting and quantum interference, which require complex setups prone to issues like loss and crosstalk.

A team of researchers from Peking University, Southern University of Science and Technology, and the University of Science and Technology of China have made a significant breakthrough in this area.

As reported in Advanced Photonics Nexus, they developed a new approach using metasurfaces, which are planar structures capable of controlling various aspects of light, such as phase, frequency, and polarization. This innovative approach allows for the generation of multiphoton entanglement on a single , simplifying the process while making it more efficient.

There are plenty of types of stars out there, but one stands out for being just a little weirder than the others. You might even say it’s strange. According to a paper from researchers at Guangxi University in China, the birth of one might have recently been observed for the very first time.

A strange star is a (so far theoretical) compact star that is so dense it literally breaks down regular parts of atoms (like neutrons) into their constituent quarks. Moreover, even those quarks (the up and down that comprise a neutron) get compressed into an even rarer type of quark called a strange quark—hence the name strange star.

Technically, the “strange” matter that a strange star would be composed of is a combination of up, down, and strange quarks. But, at least in theory, this mix of sub-hadronic particles could even be more stable than a traditional neutron star, which is similar to a strange star but doesn’t have enough gravity to break down the neutrons.

In today’s AI news, ByteDance cofounder Zhang Yiming has become China’s richest man as investors bet on companies with AI potential. Zhang’s fortune has grown to $65.5 billion, ahead of beverage giant Nongfu Spring founder Zhong Shanshan’s $56.5 billion, according to Forbes estimates. Zhang, 41, derives his net worth from a 21% stake in the privately held tech behemoth …

And, OpenAI, Google, Meta, Microsoft, and smaller firms like Anthropic are losing massive amounts of money by giving away their AI products or selling them at a loss. “We are in the era of $5 Uber rides anywhere across San Francisco but for LLMs,” wrote early OpenAI engineer Andrej Karpathy. Chatbots are free, programming assistance is cheap, and attention-grabbing, money-losing AI toys are everywhere. AI is in its free(ish) trial era.

Meanwhile, the world’s largest contract electronics maker, Foxconn, said it has built its own large language model with reasoning capabilities, developed in-house and trained in four weeks. Initially designed for internal use within the company, the artificial-intelligence model, called FoxBrain, is capable of data analysis, mathematics, reasoning and code generation. Foxconn said Nvidia provided support …

Then, once upon a time, software ate the world. Now, AI is here to digest what’s left. The old model of computing, where apps ruled, marketplaces controlled access and platforms took their cut, is unraveling. What’s emerging is an AI-first world where software functions aren’t trapped inside apps but exist as dynamic, on-demand services accessible through AI-native interfaces.

In videos, learn how to integrate ElevenLabs Conversational AI platform with Cal. com for automated meeting scheduling. Angelo, takes you through the process with step-by-step instructions, and you can view and use the complete guide with Eleven Labs full documentation.

Marine worms use nature’s 3D printing to build their bristles piece by piece.


A new study has shed light on how certain marine worms form bristles, hair-like projections on each side.

A team of researchers, led by molecular biologist Florian Raible from the Max Perutz Labs at the University of Vienna, used advanced imaging techniques to closely study Platynereis dumerilii, which is often considered a living fossil.

These annelid worms have extraordinary bristles that enable them to navigate their aquatic environment. But how are these intricate structures formed? It turns out that these species develop bristles piece by piece, similar to the process of 3D printing.