Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Scientists crack ancient salt crystals to unlock secrets of 1.4 billion-year-old air

More than a billion years ago, in a shallow basin across what is now northern Ontario, a subtropical lake much like modern-day Death Valley evaporated under the sun’s gentle heat, leaving behind crystals of halite—rock salt.

It was a very different world than the one we know today. Bacteria were the dominant form of life. Red algae had only just appeared on the evolutionary scene. Complex multicellular life like animals and plants wouldn’t show up for another 800 million years.

As the water evaporated into brine, some of it became trapped in tiny pockets within the crystals, effectively frozen in time. Those trapped fluid inclusions contained air bubbles revealing, in fine detail, the composition of early Earth’s atmosphere. The crystals were buried in sediment, effectively sealed off from the rest of the world for 1.4 billion years, their secrets unknown.

Signature neural patterns may help predict recovery from traumatic brain injury

After traumatic brain injury (TBI), some patients may recover completely, while others retain severe disabilities. Accurately evaluating prognosis is challenging in patients on life-sustaining therapy.

Though resting-state functional MRI (rs-fMRI) can assess neurological activity shortly after brain injury, it is unknown whether communication across brain regions at this early juncture predicts long-term recovery.

Not thinking about anything: Toward a brain signature of mind blanking

When we are awake, we seem to experience a continuous stream of sensations, reflections, memories, and impressions that make up our mental life. Yet some people report moments when they think about nothing at all. Is that even possible? Or is it an illusion caused by a memory bias?

Mind blanking is defined as the complete absence of mental content that can be described to others. No mental images, no catchy tune looping in your head, no obsessive thoughts… nothing. This experience is often sought after by practitioners of meditation or mindfulness.

But it isn’t confined to them: it seems to be very common after intense, prolonged cognitive effort—such as a university exam—or in cases of sleep deprivation, explains Esteban Munoz-Musat, neurologist and former doctoral student in the Picnic Lab at Paris Brain Institute.

Gut bacteria may play role in bipolar depression by directly influencing brain connectivity

Bipolar disorder (BD) is a psychiatric disorder characterized by extreme mood changes. Individuals diagnosed with BD typically alternate between periods of high energy, euphoria, irritability and/or impulsivity (i.e., manic episodes) and others marked by feelings of sadness, low energy, and hopelessness (i.e., depression).

While there are now several medications that can help patients to manage the disorder and stabilize their mood, many of these drugs have side effects and dosages often need to be periodically adjusted. Recent studies suggest that the bacteria and microorganisms living in the digestive system, also known as gut microbiota, play a key role in mental health and might also contribute to some symptoms of BD.

Researchers at Zhejiang University, the Nanhu Brain-Computer Interface Institute and other institutes recently carried out a study investigating the possible connection between gut microbiota and the depressive episodes experienced by people diagnosed with BD. Their findings, published in Molecular Psychiatry, suggest that the microorganisms in the digestive system can directly influence connections between specific brain regions known to be affected by BD depression.

Scientists grow mini brains to uncover cells behind autism-related brain overgrowth

A new study in the lab of Jason Stein, Ph.D., modeled brain development in a dish to identify cells and genes that influence infant brain growth, a trait associated with autism.

Researchers have made great strides to understand early signs of autism.

Studies have found that certain factors like genetics, sleep deprivation, excess fluid in the brain—and brain size—can increase the risk of neurodevelopmental conditions, like autism.

Humans could have as many as 33 senses

Stuck in front of our screens all day, we often ignore our senses beyond sound and vision. And yet they are always at work. When we’re more alert, we feel the rough and smooth surfaces of objects, the stiffness in our shoulders, the softness of bread.

In the morning, we may feel the tingle of toothpaste, hear and feel the running water in the shower, smell the shampoo, and later the aroma of freshly brewed coffee.

Aristotle told us there were five senses. But he also told us the world was made up of five elements and we no longer believe that. And modern research is showing we may actually have dozens of senses.

A molecular switch for green hydrogen: Catalyst changes function based on how it’s assembled

Hydrogen production through water electrolysis is a cornerstone of the clean energy transition, but it relies on efficient and stable catalysts that work under acidic conditions—currently dominated by precious metals like iridium and platinum.

A research team from the Singular Center for Research in Biological Chemistry and Molecular Materials (CiQUS) in Spain, led by María Giménez-López, has made a fundamental advance toward Earth-abundant alternatives. Their work, published in the journal Advanced Materials, shows that a single molecular compound can act as a catalytic “switch,” toggling between oxygen and hydrogen production.

Scalable method enables ultrahigh-resolution quantum dot displays without damaging performance

Over the past decade, colloidal quantum dots (QDs) have emerged as promising materials for next-generation displays due to their tunable emission, high brightness, and compatibility with low-cost solution processing. However, a major challenge is achieving ultrahigh-resolution patterning without damaging their fragile surface chemistry. Existing methods such as inkjet printing and photolithography-based processes either fall short in resolution or compromise QD performance.

To address this, a research team led by Associate Professor Jeongkyun Roh from the Department of Electrical Engineering, Pusan National University, Republic of Korea, has introduced a universal, photoresist-free, and nondestructive direct photolithography method for QD patterning. Instead of exposing QDs to harsh chemical modifications, the team engineered a photocrosslinkable blended emissive layer (b-EML).

This layer is formed by mixing QDs with a hole-transport polymer and a small fraction of an ultraviolet (UV)-activated crosslinker, enabling precise patterning while preserving QD integrity. The study was published in the journal of Advanced Functional Materials on 29 September 2025.

Lowering barriers to explainable AI: Control technique for LLMs reduces resource demands by over 90%

Large language models (LLMs) such as GPT and Llama are driving exceptional innovations in AI, but research aimed at improving their explainability and reliability is constrained by massive resource requirements for examining and adjusting their behavior.

To tackle this challenge, a Manchester research team led by Dr. Danilo S. Carvalho and Dr. André Freitas have developed new software frameworks—LangVAE and LangSpace—that significantly reduce both hardware and energy resource needs for controlling and testing LLMs to build explainable AI. Their paper is published on the arXiv preprint server.

Their technique builds compressed language representations from LLMs, making it possible to interpret and control these models using geometric methods (essentially treating the model’s internal language patterns as points and shapes in space that can be measured, compared and adjusted), without altering the models themselves. Crucially, their approach reduces computer resource usage by more than 90% compared with previous techniques.

Anode-free battery can double electric vehicle driving range

Could an electric vehicle travel from Seoul to Busan and back on a single charge? Could drivers stop worrying about battery performance even in winter? A Korean research team has taken a major step toward answering these questions by developing an anode-free lithium metal battery that can deliver nearly double driving range using the same battery volume.

A joint research team led by Professor Soojin Park and Dr. Dong-Yeob Han of the Department of Chemistry at POSTECH, together with Professor Nam-Soon Choi and Dr. Saehun Kim of KAIST, and Professor Tae Kyung Lee and researcher Junsu Son of Gyeongsang National University, has successfully achieved a volumetric energy density of 1,270 Wh/L in an anode-free lithium metal battery. This value is nearly twice that of current lithium-ion batteries used in electric vehicles, which typically deliver around 650 Wh/L. The article is published in Advanced Materials.

An anode-free lithium metal battery eliminates the conventional anode altogether. Instead, lithium ions stored in the cathode move during charging and deposit directly onto a copper current collector. By removing unnecessary components, more internal space can be devoted to energy storage, much like fitting more fuel into the same-sized tank.

/* */