Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Random driving on a 78-qubit processor reveals controllable prethermal plateau

Time-dependent driving has become a powerful tool for creating novel nonequilibrium phases such as discrete time crystals and Floquet topological phases, which do not exist in static systems. Breaking continuous time-translation symmetry typically leads to the outcome that driven quantum systems absorb energy and eventually heat up toward a featureless infinite-temperature state, where coherent structure is lost.

Understanding how fast this heating process occurs and whether it can be controlled has become a challenge in nonequilibrium physics. High-frequency periodic driving is known to delay heating, but much less is known about heating dynamics under more general, non-periodic driving protocols.

Flavanols Break the Rules of Nutrition: Scientists Uncover the Surprising Way They Boost the Brain

The health benefits of dietary flavanols appear to come from their ability to trigger responses in the brain and the body’s stress systems. That slightly dry, tightening feeling some foods leave in the mouth is known as astringency, and it comes from naturally occurring plant compounds called pol

Laser Light Rewrites Magnetism in Breakthrough Quantum Material

Researchers at the University of Basel and ETH Zurich have found a way to flip the magnetic polarity of an unusual ferromagnet using a laser beam. If the approach can be refined and scaled, it points toward electronic components that could be reconfigured with light instead of being permanently fixed.

A ferromagnet acts like it has a built-in internal agreement. Inside the material, enormous numbers of electrons behave like tiny bar magnets because of their spins. When those spins line up, their individual magnetic fields add together, producing the familiar strength that makes a compass needle settle in a direction or lets a refrigerator magnet cling to a door.

That orderly alignment is not automatic, because heat constantly shakes the system. Ferromagnetism appears only when the interactions that encourage alignment win out over thermal motion, which happens below a critical temperature (often called the Curie temperature).

Physicists Watch a Superfluid Freeze, Revealing a Strange New Quantum State of Matter

Physicists have observed a strange new quantum phase in a graphene-based system, where a superfluid appears to freeze into a solid-like state. Cooling usually pushes matter through a simple sequence. A gas condenses into a liquid, and with further cooling the liquid locks into a solid. Helium hel

/* */