The research analyzed 14 large-scale studies to identify potential drug repurposing candidates to help reduce the incidence of dementia.
How do we bridge the gap between the objective world of physics and the subjective realm of experience? QM might hold the answer.
Nvidia, Microsoft, and Arm are among the technology partners.
The ability to regulate one’s own food intake is essential to the survival of both humans and other animals. This innate ability ensures that the body receives the nutrients it needs to perform daily activities, without significantly exceeding calorie intake, which could lead to health problems and metabolic disorders.
Past neuroscience studies suggest that the regulation of food intake is supported by specific regions in the brain, including the hypothalamus and caudal nucleus of the solitary tract (cNTS), which is part of the brainstem. This key region in the brainstem is known to integrate sensory signals originating from the gut and then transform them into adaptive feeding behaviors.
While previous research has highlighted the key role of the cNTS in food intake regulation, the unique contribution of the different neuron subtypes within this brainstem region and the mechanisms by which they regulate feeding remain poorly understood. Better understanding these neuron-specific mechanisms could help to devise more effective therapeutic interventions for obesity and eating disorders.
Past research suggests that meditation and exposure to art or nature can positively impact people’s well-being and brain health, in some cases even reducing stress and supporting the processing of emotions. Yet most past studies focused on each of these experiences individually, rather than comparing their effects on brain activity.
Researchers at University of California Los Angeles set out to examine the brain activation patterns associated with a visualization-based transcendental meditation of connecting to the cosmic soul and compare them to those from people watching evocative digital art or nature videos.
Their findings, published in Frontiers in Human Neuroscience, suggest that these different types of transcending experiences prompt different brain activation patterns.
Although they don’t impact the surface directly, historical evidence and simulations suggest airbursts can pack a punch.
A team of researchers has developed a miniature, energy-efficient device capable of creating photon.
A photon is a particle of light. It is the basic unit of light and other electromagnetic radiation, and is responsible for the electromagnetic force, one of the four fundamental forces of nature. Photons have no mass, but they do have energy and momentum. They travel at the speed of light in a vacuum, and can have different wavelengths, which correspond to different colors of light. Photons can also have different energies, which correspond to different frequencies of light.
00:00: Outline.
00:53: P1, P2, P3
03:14: Feasibility study.
04:35: DJ Seo comments.
06:20: Academic work.
07:18: Bad reporting-Rachel Levy.
10:15: Canada trial-international expansion.
12:02: Elon talk at CNS
13:46: Please subscribe.
Jan 8, 2025: CES by Mark Penn, CEO of Stagwell:
https://twitter.com/ElonClipsX/status/1877222791713337623
Jan 7, 2025: Elon Announces More International Expansion:
https://twitter.com/NeuraPod/status/1876708688242589775
Nov 25, 2024: Neuralink’s CONVOY Study Announcement:
A study from Tel Aviv University could reshape our scientific understanding of how humans learn and form memories, particularly through classical and operant conditioning.
The research team found that our brain engages in a fierce competition between these two learning systems, and that only one can prevail at any given time. This means that if we try to learn two conflicting actions for the same situation simultaneously, the result will be confusion, making it difficult to perform either action when encountering the situation again.
In their study, the researchers demonstrate this phenomenon in fruit flies. When the flies were trained to associate a smell with a randomly delivered electric shock (classical conditioning) and also to connect their own actions to the smell and shock (operant conditioning), the flies became confused and failed to exhibit a clear response to the shock.