Page 30

Apr 13, 2024

Study finds that dopamine projections to the amygdala contribute to encoding identity-specific reward memories

Posted by in category: neuroscience

Over the course of their lives, humans build subjective internal models outlining the associations between specific environmental stimuli and rewards that could be gained from interacting with them. These experience-based models allow them to infer what benefits they could gain from acting in specific ways.

Apr 13, 2024

Exoplanets true to size: New model calculations shows impact of star’s brightness and magnetic activity

Posted by in category: space

In the constellation Virgo, 700 light years away from Earth, the planet WASP-39b orbits the star WASP-39. The gas giant, which takes little more than four days to complete one orbit, is one of the best-studied exoplanets. Shortly after its commissioning in July 2022, NASA’s James Webb Space Telescope turned its high-precision gaze on the distant planet.

Apr 13, 2024

Metasurface antenna could enable future 6G communications networks

Posted by in categories: internet, materials

A team led by researchers from the University of Glasgow has developed an innovative wireless communications antenna that combines the unique properties of metamaterials with sophisticated signal processing to deliver a new peak of performance.

Apr 13, 2024

Fast radio bursts: Research introduces a novel approach to characterize their behavior

Posted by in categories: physics, space

Fast radio bursts (FRBs) represent the most intense radio explosions in the universe. Since the first discovery in 2007, FRBs have garnered significant attention, culminating in the 2023 Shaw Prize in Astronomy. With yet unknown origin, these extreme cosmic bursts are among the most enigmatic phenomena in astronomy as well as physics.

Apr 13, 2024

Mystery Solved? Scientists Shed New Light on Mysterious Giant Bones That Have Puzzled Paleontologists for 150 Years

Posted by in category: futurism

Several similar large, fossilized bone fragments have been discovered in various regions across Western and Central Europe since the 19th century. The animal group to which they belonged is still the subject of much debate to this day. A study carried out at the University of Bonn could now settle this dispute once and for all: The microstructure of the fossils indicates that they come from the lower jaw of a gigantic ichthyosaur. These animals could reach 25 to 30 meters in length, a similar size to the modern blue whale. The results have now been published in the journal PeerJ.

In 1,850, the British naturalist Samuel Stutchbury reported a mysterious find in a scientific journal: A large, cylindrical bone fragment had been discovered at Aust Cliff – a fossil deposit near to Bristol. Similar bone fragments have since been found in various different places around Europe, including Bonenburg in North Rhine-Westphalia and in the Provence region of France. More than 200 million years ago, these areas were submerged beneath a huge ocean that covered vast swathes of Western and Central Europe. Fossil remains from the animal world of that time – including marine and coastal dwellers – have been preserved in the sediment.

There is still some debate to this day about the animal group to which these large, fossilized bones belonged. Stutchbury assumed in his examination of the first finds that they came from a labyrinthodontia, an extinct crocodile-like land creature. However, this hypothesis was questioned by other researchers, who believed instead that the fossils came from long-necked dinosaurs (sauropods), stegosaurs, or a still completely unknown group of dinosaurs.

Apr 13, 2024

How Curved Terahertz Waves Could Revolutionize Wireless Communication

Posted by in categories: innovation, internet

In a breakthrough that could help revolutionize wireless communication, researchers unveiled a novel method for manipulating terahertz waves, allowing them to curve around obstacles instead of being blocked by them.

While cellular networks and Wi-Fi systems are more advanced than ever, they are also quickly reaching their bandwidth limits. Scientists know that in the near future they’ll need to transition to much higher communication frequencies than what current systems rely on, but before that can happen there are a number of — quite literal — obstacles standing in the way.

Researchers from Brown University and Rice University say they’ve advanced one step closer to getting around these solid obstacles, like walls, furniture, and even people — and they do it by curving light.

Apr 13, 2024

Quantum Control Unlocked: Creating Resistance-Free Electron Channels

Posted by in categories: energy, quantum physics

Unveiling Chiral Interface States

The chiral interface state is a conducting channel that allows electrons to travel in only one direction, preventing them from being scattered backward and causing energy-wasting electrical resistance. Researchers are working to better understand the properties of chiral interface states in real materials but visualizing their spatial characteristics has proved to be exceptionally difficult.

But now, for the first time, atomic-resolution images captured by a research team at Berkeley Lab and UC Berkeley have directly visualized a chiral interface state. The researchers also demonstrated on-demand creation of these resistance-free conducting channels in a 2D insulator.

Apr 13, 2024

Researchers Develop Simple Way To Harvest More “Blue Energy” From Waves

Posted by in categories: energy, nanotechnology

As any surfer will tell you, waves pack a powerful punch. We’re now making strides toward harnessing the ocean’s relentless movements for energy, thanks to advancements in “blue energy” technology. In a study published in ACS Energy Letters, researchers discovered that by moving the electrode from the middle to the end of a liquid-filled tube—where the water’s impact is strongest—they significantly boosted the efficiency of wave energy collection.

The tube-shaped wave-energy harvesting device improved upon by the researchers is called a liquid-solid triboelectric nanogenerator (TENG). The TENG converts mechanical energy into electricity as water sloshes back and forth against the inside of the tube. One reason these devices aren’t yet practical for large-scale applications is their low energy output. Guozhang Dai, Kai Yin, Junliang Yan, and colleagues aimed to increase a liquid-solid TENG’s energy harvesting ability by optimizing the location of the energy-collecting electrode.

Apr 12, 2024

Voice Assistants Learn the Art of Small Talk

Posted by in categories: business, economics, education, habitats

Voice assistants have already made significant strides in areas such as smart home integration, educational settings and business applications. However, their current capabilities are limited by a lack of robust reasoning and planning abilities.

In fact, just 7.8% of consumers believe voice technology is as smart and reliable as a real person today, according to the PYMNTS Intelligence report “ How Consumers Want to Live in the Voice Economy.”

Apr 12, 2024

Large NIH Grant Supports CRISPR-based Gene Therapy Development for Brain Diseases

Posted by in categories: biotech/medical, genetics, neuroscience

If we can prove the concept of this technology in the two diseases we’re studying, we can then apply it to hundreds or thousands of diseases of the brain.

Yong-Hui Jiang, MD, PhD

Yes, please. Huntington disease hopefully.

Continue reading “Large NIH Grant Supports CRISPR-based Gene Therapy Development for Brain Diseases” »

Page 30 of 11,003First2728293031323334Last