Menu

Blog

Page 22

Jan 10, 2025

Trust paradox: Benefiting from betrayal doesn’t always erode trust

Posted by in category: evolution

Imagine this scenario: Two people cheat on their partners with each other and then leave their partners to be together. Should they trust each other, or “once a cheater, always a cheater”?

Intuition and past research suggest that whether people deem someone trustworthy depends on that person’s past behavior and reputation for . But now, new work from psychologists at UCLA and Oklahoma State University is helping to explain why people might nevertheless trust certain cheaters and other betrayers.

When we benefit from someone’s betrayal, we tend to still regard that person as inherently trustworthy, the psychologists reported in a study published in Evolution and Human Behavior. Their experiments found that although subjects tended to regard people who betrayed others as generally less trustworthy, when a person’s betrayal benefited the subject, that person was still thought to be worthy of trust.

Jan 10, 2025

AI categorizes 700 million aurora images for better geomagnetic storm forecasting

Posted by in categories: particle physics, robotics/AI, security

The aurora borealis, or northern lights, is known for a stunning spectacle of light in the night sky, but this near-Earth manifestation, which is caused by explosive activity on the sun and carried by the solar wind, can also interrupt vital communications and security infrastructure on Earth. Using artificial intelligence, researchers at the University of New Hampshire have categorized and labeled the largest-ever database of aurora images that could help scientists better understand and forecast the disruptive geomagnetic storms.

The research, recently published in the Journal of Geophysical Research: Machine Learning and Computation, developed artificial intelligence and machine learning tools that were able to successfully identify and classify over 706 million images of auroral phenomena in NASA’s Time History of Events and Macroscale Interactions during Substorms (THEMIS) data set collected by twin spacecrafts studying the space environment around Earth. THEMIS provides images of the night sky every three seconds from sunset to sunrise from 23 different stations across North America.

“The massive dataset is a valuable resource that can help researchers understand how the interacts with the Earth’s magnetosphere, the protective bubble that shields us from charged particles streaming from the sun,” said Jeremiah Johnson, associate professor of applied engineering and sciences and the study’s lead author. “But until now, its huge size limited how effectively we can use that data.”

Jan 10, 2025

Discovery of new skeletal tissue advances regenerative medicine potential

Posted by in categories: bioengineering, biotech/medical, food, life extension

An international research team led by the University of California, Irvine has discovered a new type of skeletal tissue that offers great potential for advancing regenerative medicine and tissue engineering.

Most cartilage relies on an external extracellular matrix for strength, but “lipocartilage,” which is found in the ears, nose and throat of mammals, is uniquely packed with fat-filled cells called “lipochondrocytes” that provide super-stable internal support, enabling the tissue to remain soft and springy—similar to bubbled packaging material.

The study, published in the journal Science, describes how lipocartilage cells create and maintain their own lipid reservoirs, remaining constant in size. Unlike ordinary adipocyte fat cells, lipochondrocytes never shrink or expand in response to food availability.

Jan 10, 2025

How secure is your Wi-Fi network? Research uncovers major vulnerability in wireless networking technology

Posted by in category: internet

Jan 10, 2025

Enhanced tandem solar modules promise lower costs and higher efficiency

Posted by in categories: solar power, sustainability

Increasing module efficiency and expanding manufacturing capacity play complementary roles in reducing costs of metal halide perovskite/silicon tandem solar modules, according to researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL). Each cost lever can play a similar role depending on a manufacturer’s ability to scale up and improve module performance.

Most photovoltaic (PV) modules manufactured today are based on single-junction . By pairing silicon with another such as metal halide perovskites (MHPs), thus creating a , manufacturers can create a solar module that can convert more sunlight to electricity than using silicon alone.

This tandem technology is still in the early stages, and there are multiple options being pursued to integrate MHPs and silicon, with a lot of unknowns in terms of cost and performance. To address this gap, the researchers built a manufacturing cost model that combines laboratory processes with existing equipment and supply chains to compare different possible approaches at scale.

Jan 10, 2025

Photoacoustic spectroscopy approach achieves real-time detection of low gas concentrations

Posted by in categories: chemistry, electronics

Researchers have developed a new method for quickly detecting and identifying very low concentrations of gases. The new approach, called coherently controlled quartz-enhanced photoacoustic spectroscopy, could form the basis for highly sensitive real-time sensors for applications such as environmental monitoring, breath analysis and chemical process control.

“Most gases are present in small amounts, so detecting gases at low concentrations is important in a wide variety of industries and applications,” said research team leader Simon Angstenberger from the University of Stuttgart in Germany. “Unlike other trace gas detection methods that rely on photoacoustics, ours is not limited to specific gases and does not require prior knowledge of the gas that might be present.”

Continue reading “Photoacoustic spectroscopy approach achieves real-time detection of low gas concentrations” »

Jan 10, 2025

Record cold quantum refrigerator paves way for reliable quantum computers

Posted by in categories: biotech/medical, encryption, quantum physics, robotics/AI

Quantum computers require extreme cooling to perform reliable calculations. One of the challenges preventing quantum computers from entering society is the difficulty of freezing the qubits to temperatures close to absolute zero.

Now, researchers at Chalmers University of Technology, Sweden, and the University of Maryland, U.S., have engineered a new type of refrigerator that can autonomously cool superconducting qubits to record , paving the way for more reliable quantum computation.

Quantum computers have the potential to revolutionize fundamental technologies in various sectors of society, with applications in medicine, energy, encryption, AI, and logistics. While the building blocks of a classical computer—bits—can take a value of either 0 or 1, the most common building blocks in quantum computers—qubits—can have a value of 0 and 1 simultaneously.

Jan 10, 2025

Unraveling the Link Between Oil Extraction and Earthquakes

Posted by in category: futurism

Over 100 small earthquakes in Surrey might have been caused by oil drilling nearby, according to UCL research.

The study, which involved extensive simulations, points to a probable link between seismic activity and the pressures of oil extraction.

Earthquake Cluster in Surrey.

Jan 10, 2025

Brightest Space Explosion Ever May Hide an Elusive Dark Matter Particle

Posted by in categories: cosmology, particle physics

In October 2022, scientists detected the explosive death of a star 2.4 billion light-years away that was brighter than any ever recorded.

As the star’s core collapsed down into a black hole, the gamma-ray burst emitted by the star – an event named GRB 221009A – erupted with energies of up to 18 teraelectronvolts. Gamma-ray bursts are already the brightest explosions our Universe can produce; but GRB 221009A was an absolute record-smasher, earning it the moniker “the BOAT” – Brightest Of All Time.

There is, however, something wrong with the picture, according to a team of astrophysicists led by Giorgio Galanti of the National Institute for Astrophysics (INAF) in Italy. Based on cutting-edge models of the Universe, we shouldn’t be able to see photons more powerful than 10 teraelectronvolts in data from the Large High Altitude Air Shower Observatory (LHAASO) that made the detection.

Jan 10, 2025

NVIDIA Launches Cosmos World Foundation Model Platform to Accelerate Physical AI Development

Posted by in categories: robotics/AI, transportation

NVIDIA today announced NVIDIA Cosmos™, a platform comprising state-of-the-art generative world foundation models, advanced tokenizers, guardrails and an accelerated video processing pipeline built to advance the development of physical AI systems such as autonomous vehicles (AVs) and robots.

Page 22 of 12,353First1920212223242526Last