Toggle light / dark theme

AI is hackable as long as it’s underpinning technology is still supported on legacy platform technology and connected to a legacy infrastructure. Only when the underpinning technology & net infrastructure is updated to Quantum will we see a secured AI environment.


At MIT, machine learning specialists are training deep learning algorithms to spot cyber attacks. It may be AI’s ultimate test.

Read more

AI has been around for over 50 years. So, no it is not new technology. However, what is new is the various breeds of AI. Online bot technology is where folks can expect a larger immediate return. physical Robotics is still not going to deliver at the level that the consumers and various businesses require for adoption on a massive scale. Again, quantum and bio-computing will improve robotics as well as other areas of AI.


The history of technology, whether of the last five or five hundred years, is often told as a series of pivotal events or the actions of larger-than-life individuals, of endless “revolutions” and “disruptive” innovations that “change everything.” It is history as hype, offering a distorted view of the past, sometimes through the tinted lenses of contemporary fads and preoccupations.

In contrast, ENIAC in Action: Making and Remaking the Modern Computer, is a nuanced, engaging and thoroughly researched account of the early days of computers, the people who built and operated them, and their old and new applications. Say the authors, Thomas Haigh, Mark Priestley and Crispin Rope:

The titles of dozens of books have tried to lure a broad audience to an obscure topic by touting an idea, a fish, a dog, a map, a condiment, or a machine as having “changed the world”… One of the luxuries of writing an obscure academic book is that one is not required to embrace such simplistic conceptions of history.

All true and good points. Until the under pinning technology and net infrastructures are update; all things connected will mean all things hackable.


Medical devices like pacemakers and insulin pumps will save many lives, but they also represent an opportunity to computer hackers who would use the Internet to cause havoc. Former futurist-in-residence at the FBI, Marc Goodman says it is easy to take for granted how connected we’ve already become to the Internet. Most American adults keep their phones within arm’s reach all day, and keep their devices on their nightstand while they sleep — and forget about actually remembering people’s phone numbers. That is a job we have outsourced to machines.

In this sense, says Goodman, we are already cyborgs. But digital devices connected to the Internet will continue to move inside our bodies, just as pacemakers and insulin pumps have. In his interview, Goodman discusses cases of computer hackers taking advantage of these devices’ connectivity to show how vulnerable we could soon become to their potentially destructive wishes. In one case, a hacker demonstrated he could release several weeks of insulin into a diabetic’s body, certain to cause a diabetic coma and death. In another, hackers induced epileptic seizures by hacking the Epilepsy Foundation’s webpage.

At bottom is the Internet of Things, a increasingly connected web of devices that will make our lives simpler and more efficient, but this network will also make us vulnerable in ways that are difficult to detect, let alone prevent. Goodman’s message is not that we need to constantly fear a new world of better health and convenience, but that we need to be aware of technology’s pitfalls in life.

Read more

Interesting and will be important in brain/ neuro replicating and enhancements.


Memories formed in one part of the brain are replayed and transferred to a different area of the brain during rest, according to a new UCL study in rats.

The finding suggests that replay of previous experiences during rest is important for , a process whereby the brain stabilises and preserves memories for quick recall in the future. Understanding the physiological mechanism of this is essential for tackling amnesiac conditions such as Alzheimer’s disease, where memory consolidation is affected.

Lead researcher, Dr Freyja Ólafsdóttir (UCL Cell & Developmental Biology), said: “We want to understand how a healthy brain stores and accesses memories as this will give us a window into how conditions such as Alzheimer’s disease disrupt the process. We know people with Alzheimer’s have difficulty recalling the recent past but can often readily remember childhood memories, which seem more resilient. The parts of the brain we studied are some of the first regions affected in Alzheimer’s and now we know they are also involved in memory consolidation.”

Hmmm; nice attempt. However, not the author’s example was the best one to explain Quantum.


The common perception is that quantum mechanics only really matter for exotic physics experiments, but every time you wait impatiently for your breakfast to cook, you’re staring at the place where it all began.

Read more

Australia’s Quantum Data Bus; nice. We’re getting closer and within the next 7 years we will more than likely have quantum in mainstream computing at this rate.


RMIT University researchers have trialled a quantum processor capable of routing quantum information from different locations in a critical breakthrough for quantum computing.

The work opens a pathway towards the “quantum data bus”, a vital component of future quantum technologies.

The research team from the Quantum Photonics Laboratory at RMIT in Melbourne, Australia, the Institute for Photonics and Nanotechnologies of the CNR in Italy and the South University of Science and Technology of China, have demonstrated for the first time the perfect state transfer of an entangled quantum bit (qubit) on an integrated photonic device.

Read more

Australia is making great strides in this area as well.


Scientists are racing to deploy foolproof quantum encryption before quantum computers come along that render all our passwords useless.

Passwords work today because the computers we have, while theoretically capable of breaking passwords, would take an impractical amount of time to do so.

“The encryption schemes today are based on factoring and on prime numbers, so if you had a computer that could factor instantly, if it did that today it could break all encryption schemes,” said David Awshalom, an experimental physicist at the University of Chicago’s Institute of Molecular Engineering.