Menu

Blog

Page 1064

Jan 15, 2024

A new approach to realize highly efficient, high-dimensional quantum memories

Posted by in categories: particle physics, quantum physics

Many physicists and engineers have been trying to develop highly efficient quantum technologies that can perform similar functions to conventional electronics leveraging quantum mechanical effects. This includes high-dimensional quantum memories, storage devices with a greater information capacity and noise resilience than two-dimensional quantum memories.

So far, developing these high-dimensional memories has proved challenging, and most attempts have not yielded satisfactory efficiencies. In a paper published in Physical Review Letters, a research team at University of Science and Technology of China and Hefei Normal University recently introduced an approach to realize a highly efficient 25-dimensional based on cold atoms.

“Our group has been using the orbital angular momentum mode in the space channel to study high-dimensional quantum and has accumulated a wealth of research experience and technology,” Dong Sheng Ding, co-author of the paper, told Phys.org. “Achieving high-dimensional and high-efficiency quantum storage has always been our goal.”

Jan 15, 2024

From disorder to design: Exploring electrical tuning of branched flow in liquid crystal films

Posted by in category: entertainment

A new study in Nature Communications investigates the electrical tuning of branched light flow in nematic liquid crystal (NLC) films, revealing controlled patterns and statistical characteristics with potential applications in optics and photonics.

Branched light flow manifests as intricate patterns in light waves navigating through a disordered medium, forming multiple branching pathways.

Positioned between ballistic and diffusive transport phenomena—where ballistic implies unhindered straight-line movement akin to a , and diffusive involves scattered, chaotic behavior—the phenomenon gains significance for its potential in controlling physical processes, particularly optics, and photonics.

Jan 15, 2024

Researchers present simplified, improved scheme for precision measurement using lasers

Posted by in category: quantum physics

Within atomic and laser physics communities, scientist John “Jan” Hall has become a key figure in the history of laser frequency stabilization and precision measurement using lasers. Hall’s work revolved around understanding and manipulating stable lasers in ways that were revolutionary for their time. His work laid a technical foundation for measuring a tiny fractional distance change brought by a passing gravitational wave. His work in laser arrays awarded him the Nobel Prize in Physics in 2005.

Building on this foundation, JILA and NIST Fellow Jun Ye and his team embarked on an ambitious journey to push the boundaries of precision measurement even further. This time, their focus turned to a specialized technique known as the Pound-Drever-Hall (PDH) method (developed by scientists R. V. Pound, Ronald Drever, and Hall himself), which plays a large role in precision optical interferometry and laser stabilization.

While physicists have used the PDH method for decades in ensuring their laser frequency is stably “locked” to an artificial or quantum reference, a limitation arising from the frequency modulation process itself, called residual amplitude modulation (RAM), can still affect the stability and accuracy of the laser’s measurements.

Jan 15, 2024

Defying Quantum Dogma: The Surprising Success of Dense Solid-State Qubits

Posted by in categories: computing, quantum physics

Solid-state qubits: Forget about being clean, embrace mess, says a new recipe for dense arrays of qubits with long lifetimes.

New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, shows a paper in Nature Physics.

Clean lines and minimalism, or vintage shabby chic? It turns out that the same trends that occupy the world of interior design are important when it comes to designing the building blocks of quantum computers.

Jan 15, 2024

Decoding the Paradox: White Blood Cells As Double Agents in Breast Cancer

Posted by in category: biotech/medical

Recent research highlights the dual role of VEGF-C-producing macrophages in breast tumors, potentially guiding metastasis to less harmful areas, opening new avenues for targeted cancer therapies.

A new study from Karolinska Institutet published in Cell reports shows that tumor-associated macrophages, which are white blood cells that are found in breast tumors, can both help and hinder the spread of cancer cells to other organs. The researchers found that macrophages that produce a substance called VEGF-C reduce the spread of breast cancer to the lungs but increase the spread to the lymph nodes. This may have implications for the prognosis and treatment of breast cancer.

Understanding breast cancer and the role of tams.

Jan 15, 2024

Galactic Genesis: James Webb Telescope Deciphers Early Universe’s Black Hole Enigma

Posted by in categories: cosmology, physics

JWST’s recent observations of two quasars from the universe’s infancy reveal crucial insights into the early relationship between black holes and their galaxies, echoing mass ratios seen in the more recent universe.

New images from the James Webb Space Telescope (JWST) have revealed, for the first time, starlight from two massive galaxies hosting actively growing black holes – quasars – seen less than a billion years after the Big Bang. The black holes have masses close to a billion times that of the Sun, and the host galaxy masses are almost one hundred times larger, a ratio similar to what is found in the more recent universe. A powerful combination of the wide-field survey of the Subaru Telescope and the JWST has paved a new path to study the distant universe, reports a recent study in Nature.

Observations of giant black holes have attracted the attention of astronomers in recent years. The Event Horizon Telescope (EHT) has started to image the “shadow” of black holes at the galaxy centers. The 2020 Novel Prize in Physics was awarded to stellar motion observations at the heart of the Milky Way. While the existence of such giant black holes has become solid, no one knows their origin.

Jan 15, 2024

The Future of Magnetism: Scientists Unveil Secrets of Electromagnons

Posted by in categories: futurism, particle physics

Scientists have uncovered the interaction between lattice vibrations and spins in a hybrid excitation called an electromagnon, using a unique combination of experiments at the SwissFEL X-ray free electron laser. This discovery at the atomic level paves the way for ultrafast manipulation of magnetism using light.

Within the atomic lattice of a solid, particles and their various properties cooperate in wave like motions known as collective excitations. When atoms in a lattice jiggle together, the collective excitation is known as a phonon. Similarly, when the atomic spins – the magnetisation of the atoms-move together, it’s known as a magnon.

The situation gets more complex. Some of these collective excitations talk to each other in so-called hybrid excitations. One such hybrid excitation is an electromagnon. Electromagnons get their name because of the ability to excite the atomic spins using the electric field of light, in contrast to conventional magnons: an exciting prospect for numerous technical applications. Yet their secret life at an atomic level is not well understood.

Jan 15, 2024

New Research Shows Lifestyle Changes Can Prevent Dementia

Posted by in categories: biotech/medical, health, neuroscience

Research indicates enhanced mental function in individuals who maintain an active lifestyle and engage in social interactions, alongside managing blood pressure and diabetes effectively.

As federal approval for more Alzheimer’s disease medications progresses, a recent study conducted by UC San Francisco and Kaiser Permanente Washington reveals that tailored health and lifestyle modifications can postpone or prevent memory deterioration in older adults at increased risk.

The two-year study compared cognitive scores, risk factors, and quality of life among 172 participants, of whom half had received personalized coaching to improve their health and lifestyle in areas believed to raise the risk of Alzheimer’s, such as uncontrolled diabetes and physical inactivity. These participants were found to experience a modest boost in cognitive testing, amounting to a 74% improvement over the non-intervention group.

Jan 15, 2024

Cosmic Puzzles: The Mystery Behind Universe’s Rare Radio Circles Unveiled

Posted by in categories: cosmology, physics

It’s not every day astronomers say, “What is that?” After all, most observed astronomical phenomena are known: stars, planets, black holes, and galaxies. But in 2019 the newly completed ASKAP (Australian Square Kilometer Array Pathfinder) telescope picked up something no one had ever seen before: radio wave circles so large they contained entire galaxies in their centers.

As the astrophysics community tried to determine what these circles were, they also wanted to know why the circles were. Now a team led by University of California San Diego Professor of Astronomy and Astrophysics Alison Coil believes they may have found the answer: the circles are shells formed by outflowing galactic winds, possibly from massive exploding stars known as supernovae. Their work is published in Nature.

Jan 15, 2024

How OpenAI is approaching 2024 worldwide elections

Posted by in category: robotics/AI

If we’re not careful OpenAI’s tools could have an enormous effect on the 2024 election.


We’re working to prevent abuse, provide transparency on AI-generated content, and improve access to accurate voting information.