Toggle light / dark theme

A compact, lightweight sensor system with infrared imaging capabilities developed by an international team of engineers could be easily fitted to a drone for remote crop monitoring.

This flat-optics technology has the potential to replace traditional optical lens applications for environmental sensing in a range of industries.

This innovation could result in cheaper groceries as farmers would be able to pinpoint which crops require irrigation, fertilization and pest control, instead of taking a one-size-fits-all approach, thereby potentially boosting their harvests.

A research team led by Director JO Moon-Ho of the Center for Van der Waals Quantum Solids within the Institute for Basic Science (IBS) has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nanometer (nm). The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.

This research was published in the journal Nature Nanotechnology (“Integrated 1D epitaxial mirror twin boundaries for ultra-scaled 2D MoS 2 field-effect transistors”).

Integrated devices based on two-dimensional (2D) semiconductors, which exhibit excellent properties even at the ultimate limit of material thickness down to the atomic scale, are a major focus of basic and applied research worldwide. However, realizing such ultra-miniaturized transistor devices that can control the electron movement within a few nanometers, let alone developing the manufacturing process for these integrated circuits, has been met with significant technical challenges.

The advent of quantum computers promises to revolutionize computing by solving complex problems exponentially more rapidly than classical computers. However, today’s quantum computers face challenges such as maintaining stability and transporting quantum information.

Phonons, which are quantized vibrations in periodic lattices, offer new ways to improve these systems by enhancing qubit interactions and providing more reliable information conversion. Phonons also facilitate better communication within quantum computers, allowing the interconnection of them in a network.

Nanophononic materials, which are artificial nanostructures with specific phononic properties, will be essential for next-generation quantum networking and . However, designing phononic crystals with desired characteristics at the nano-and micro-scales remains challenging.

MD Anderson researchers identify molecule that reduces age-related inflammation and improves brain and muscle function in preclinical models.

MD Anderson News Release June 21, 2024

Researchers at The University of Texas MD Anderson Cancer Center have demonstrated that therapeutically restoring…


The study, published today in Cell, identified a small molecule compound that restores physiological levels of telomerase reverse transcriptase (TERT), which normally is repressed with the onset of aging. Maintenance of TERT levels in aged lab models reduced cellular senescence and tissue inflammation, spurred new neuron formation with improved memory, and enhanced neuromuscular function, which increased strength and coordination.

In pausing to think before making an important decision, we may imagine the potential outcomes of different choices we could make. While this “mental simulation” is central to how we plan and make decisions in everyday life, how the brain works to accomplish this is not well understood.

An international team of scientists has now uncovered neural mechanisms used in planning. Its results, published in the journal Nature Neuroscience, suggest that an interplay between the brain’s prefrontal cortex and hippocampus allows us to imagine future outcomes in order to guide our decisions.

“The prefrontal cortex acts as a ‘simulator,’ mentally testing out possible actions using a cognitive map stored in the hippocampus,” explains Marcelo Mattar, an assistant professor in New York University’s Department of Psychology and one of the paper’s authors.

Back in June, YouTube quietly made a subtle but significant policy change that, surprisingly, benefits users by allowing them to remove AI-made videos that simulate their appearance or voice from the platform under YouTube’s privacy request process.

First spotted by TechCrunch, the revised policy encourages affected parties to directly request the removal of AI-generated content on the grounds of privacy concerns and not for being, for example, misleading or fake. YouTube specifies that claims must be made by the affected individual or authorized representatives. Exceptions include parents or legal guardians acting on behalf of minors, legal representatives, and close family members filing on behalf of deceased individuals.

According to the new policy, if a privacy complaint is filed, YouTube will notify the uploader about the potential violation and provide an opportunity to remove or edit the private information within their video. YouTube may, at its own discretion, grant the uploader 48 hours to utilize the Trim or Blur tools available in YouTube Studio and remove parts of the footage from the video. If the uploader chooses to remove the video altogether, the complaint will be closed, but if the potential privacy violation remains within those 48 hours, the YouTube Team will review the complaint.