Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

“Robots Can Feel Now”: New Color-Changing Skins Let Machines React Instantly Without Wires, Screens, or Human Input

IN A NUTSHELL 🐙 Researchers at the University of Nebraska–Lincoln have developed synthetic skins that mimic the color-changing abilities of marine creatures. ⚙️ These innovative skins utilize autonomous materials that respond to environmental stimuli without the need for traditional electronics. 📱 Potential applications include wearable devices and soft robotics, offering flexibility and adaptability in various

Single-molecule magnet could lead to stamp-sized hard drives capable of storing 100 times more data

Chemists from The University of Manchester and The Australian National University (ANU) have engineered a new type of molecule that can store information at temperatures as cold as the dark side of the moon at night, with major implications for the future of data storage technologies.

Groundbreaking project to make artificial human DNA begins

In a groundbreaking development, scientists have started working on the building blocks of human life from scratch.

The project, dubbed the Synthetic Human Genome Project, is being funded by London-based Wellcome Trust, the World’s largest medical charity, with an initial investment of £10 million (approximately $12.7 million).

The research has been largely considered taboo due to fears that it could lead to designer babies or unintended consequences for future generations.

(That’s not my taboo. Creating Synthetic DNA can lead to the creation of synthetic humans. It can be useful in stopping wildlife extinction, but we don’t know the implications of what happens when we do. TheThe BBC also reported on this. Link in comments)


Work has started on a groundbreaking, yet contentious, project to create artificial human DNA from scratch, marking a potential world first.

Quantum simulation of chemical dynamics achieved for the first time

Researchers at the University of Sydney have successfully performed a quantum simulation of chemical dynamics with real molecules for the first time, marking a significant milestone in the application of quantum computing to chemistry and medicine.

Understanding in real time how atoms interact to form new compounds or interact with light has long been expected as a potential application of quantum technology. Now, quantum chemist Professor Ivan Kassal and Physics Horizon Fellow Dr Tingrei Tan, have shown it is possible using a quantum machine at the University of Sydney.

The innovative work leverages a novel, highly resource-efficient encoding scheme implemented on a trapped-ion quantum computer in the University of Sydney Nanoscience Hub, with implications that could help transform medicine, energy and materials science.


University of Sydney scientists have made a big step towards future design of treatments for skin cancer or improved sunscreen by modelling photoactive chemical dynamics with a quantum computer.

New technique tracks blood sugar with light

Diabetes is a very prevalent disease that, unfortunately, still has no treatment. People with diabetes need to monitor their blood glucose levels (BGLs) regularly and administer insulin to keep them in check. In almost all cases, BGL measurements involve drawing blood from a fingertip through a finger prick. Since this procedure is painful, less invasive alternatives that leverage modern electronics are being actively researched worldwide.

What Shapes the Lives of the Gut’s Microbial Inhabitants

A biophysical model sheds light on how the subtle interplay of fluid dynamics and bacterial growth controls the fluctuating population of microbes in the human gut.

The human body harbors large numbers of bacteria—about as many as human cells—most of which are located in the gut, mainly in the colon. Together, diverse microorganisms including multiple species and strains of bacteria constitute the gut microbiota, which is thought to play a central role in human health, affecting the immune response and the progression of different diseases. However, despite a vast body of microbiota studies based on gene sequencing and on experiments with animal models, the dynamics of microbial populations in the human gut remain poorly understood. Alinaghi Salari of the University of Toronto and James Cremer of Stanford University have now proposed a biophysical model of the gut environment that incorporates a broad set of features of the human large intestine [1].

Scientists discover unknown organelle inside our cells

The discovery of an unknown organelle inside our cells could open the door to new treatments for devastating inherited diseases.

The , a type of specialized structure, has been dubbed a “hemifusome” by its discoverers at the University of Virginia School of Medicine and the National Institutes of Health. This little organelle has a big job helping our cells sort, recycle and discard important cargo within themselves, the scientists say. The new discovery could help scientists better understand what goes wrong in genetic conditions that disrupt these essential housekeeping functions.

“This is like discovering a new recycling center inside the cell,” said researcher Seham Ebrahim, Ph.D., of UVA’s Department of Molecular Physiology and Biological Physics. “We think the hemifusome helps manage how cells package and process material, and when this goes wrong, it may contribute to diseases that affect many systems in the body.”

The mystery of Mercury’s missing meteorites, and how we may have finally found some

Most meteorites that have reached Earth come from the asteroid belt between Mars and Jupiter. But we have 1,000 or so meteorites that come from the moon and Mars. This is probably a result of asteroids hitting their surfaces and ejecting material toward our planet.

It should also be physically possible for such debris to reach the Earth from Mercury, another nearby rocky body. But so far, none have been confirmed to come from there—presenting a longstanding mystery.

A new study that my colleagues and I conducted has discovered two meteorites that could have a Mercurian origin. If confirmed, they would offer a rare window into Mercury’s formation and evolution, potentially reshaping our understanding of the planet nearest the sun. Our work is published in the journal Icarus.