Toggle light / dark theme

Meet the “Yangtze River Three Gorges 1”, an electric cruise ship, announced in December, that is poised to become the world’s largest of its kind (among EVs).

According to the brief info, it will be launched in July and enter service in November of 2021, on popular tourist routes: the Two Dams and One Gorge, the Yichang Yangtze River Night Cruise, and the Three Gorges Shiplift.

Not only will the size and passenger capacity be the highest, but also the battery capacity — roughly 7.5 MWh (an equivalent of 75–100 long-range electric cars). The LFP-type batteries (over 10000 cells) will be supplied by CATL.

Chipmakers often place orders with contract manufacturers instead of fabricating chips in-house. It takes time to manufacture semiconductors while reconfiguring lines to accommodate varying specifications, making it difficult to turn out different chips at the same time.


TOKYO — The auto industry is facing a severe lack of semiconductors amid rising use of the chips in other products, like smartphones and communication base stations.

This has forced Germany’s Volkswagen as well as Japanese makers like Honda and Nissan to reduce production.

Toyota Motor has decided to reduce production of its Tundra pickup truck at its plant in the U.S. state of Texas due to the semiconductor shortage. The company has not released details on the size or time frame regarding the production cut but is looking into whether the lack of semiconductors will affect other vehicles.

The potential foray into “personal air mobility” was announced as part of Cadillac’s portfolio of luxury and EV vehicles. It included an autonomous shuttle and an electric vertical takeoff and landing (eVTOL) aircraft, or more commonly known as a flying car or air taxi.

Michael Simcoe, vice president of GM global design, said each concept reflected “the needs and wants of the passengers at a particular moment in time and GM’s vision of the future of transportation.”

“This is a special moment for General Motors as we reimagine the future of personal transportation for the next five years and beyond,” Simcoe said.

There’s a new crop of supersonic aircraft beginning to sprout, thanks to advances in engine, materials and satellite weather tracking that will enable aircraft to break the sound barrier over land without the disruptive noise pollution of a sonic boom reaching the ground.

Aerion, Boom and Spike, for three examples, are working on supersonic business jets. Virgin Galactic is looking to bring the time savings of Mach 3 travel to a slightly broader passenger market. One of the issues, of course, is that supersonic flight has long been illegal over US soil, boomless cruise or no boomless cruise. But the US Government wants to set the regulatory agenda internationally, and has instructed the FAA to take a leadership role as the sector develops.

Supersonic flight over American soil will remain prohibited, but new regulations will streamline the process through which these companies can apply for specific exemptions, clearing away some of the red tape and offering a clear path for flight testing over land.

A new “transforming” rover in development at NASA will be able to explore rough terrain unlike any rover before it.

DuAxle (short for dual-Axel) gets its name because it’s made of a combination of a pair of two-wheeled Axel rovers. The Axel rover is a simple, two-wheeled rover with a long tether that connects to a larger vehicle and stabilizes the rover as it descends into and explores craters that other rovers would not be able to handle. The Axel is equipped with a robotic arm that can collect samples, as well as stereoscopic cameras to gather imagery.

Anyone who has followed the career of Elon Musk knows that he formulated a set of goals many years ago, and has worked tirelessly and methodically to reach those goals, a process that he knew would take years or decades. Even casual observers are familiar with Tesla’s Master Plan, a three-part strategy to bring a mid-priced EV to the mass market.

Circa 2010


Unmanned aerial vehicles, or UAVs, are used in many applications to gather intelligence without risking human lives. These aircraft, however, have limited flight time because of their reconnaissance payload requirements coupled with their limited scale. A microwave-powered flight vehicle would be able to perform a reconnaissance mission continuously.

Using beamed microwave energy from a remote source on the ground, the airplane gathers energy using onboard antennas. A rectifying antenna, or rectenna, harvests power and rectifies it into a form usable by an onboard electric motor that drives the propeller, providing thrust. Using a rectenna array affixed to the underside of the aircraft, the power needed to maintain flight can be remotely transmitted.

The idea of a fuel-less flight vehicle, or an aircraft that does not carry its own fuel, has been pursued in few different forms over the past decades. There are many different approaches for how to power these vehicles; however, the common theme is that power must be transmitted from a source remote to the aircraft. Some of the possibilities for power transmission include solar power, the heating of air underneath the aircraft to cause thrust, and using antennas to convert microwave radiation into electrical power.