Toggle light / dark theme

Sodium-ion (Na-ion) batteries and solid-state batteries have both been in the news recently. Why? Because the need for battery storage is growing rapidly as the global economy seeks carbon-based energy alternatives in pursuit of the goal to achieve net-zero emissions by the mid-century.

Na-ion Battery News

In April I wrote about BYD, a Chinese electric vehicle (EV) manufacturer, that is using sodium-ion (Na-ion) battery packs instead of lithium-ion (Li-ion) in some of its models. In its latest report, IDTechEx, out of Cambridge in the United Kingdom, states that although Na-ion batteries are not the answer to all battery-power applications, they do provide a complimentary addition to battery packs used not just in EVs but also for backup power within utilities and factories.

Since launching in July 2017, the Model 3 from Tesla Inc TSLA has been one of the bestselling electric vehicles of all time.

A recent Bloomberg survey reveals how Model 3 owners have felt about the company over time — and Tesla CEO Elon Musk might not love the results.

What Happened: The Model 3 and Model Y continue to be Tesla’s bestselling models and big reasons why the company has dominated the market share for electric vehicles around the world.

ODD ANDERSEN/Getty.

The range has been a top concern for potential buyers transitioning from internal combustion vehicles to electric ones. In 2008, when EVs were still a rare new concept, Tesla promised a 200-mile (320 km) range on a single charge on its Roadster, a model it soon discontinued. Its second offering, Model S, promised a higher range of 249 miles (401 km) in 2012.

RMIT University’s new proton battery could revolutionize energy storage, offering a safe, affordable, eco-friendly alternative to lithium-ion batteries.

The latest ‘proton battery’ developed by RMIT University holds the potential to revolutionize power supply for homes, vehicles, and devices without the disposal-related environmental challenges posed by lithium-ion batteries.

The battery works by using a carbon electrode to store hydrogen that has been separated from water, functioning like a hydrogen fuel cell to generate electricity.

The technology can also be used in fog and smoke, aiding firefighters.

This is according to a report by PopSci published on Wednesday.


Researchers at Purdue University and Los Alamos National Laboratory have joined forces to engineer something they call “heat-assisted detection and ranging,” or HADAR, which consists of a completely new camera imaging system based on AI interpretations of heat signatures. The technology could soon allow vehicles and robots to see at night time.

A once muddy, unclear tech

Organic light-emitting diodes (OLEDs) are now widely used. For use in displays, blue OLEDs are additionally required to supplement the primary colors red and green. Especially in blue OLEDs, impurities give rise to strong electrical losses, which could be partly circumvented by using highly complex and expensive device layouts. A team from the Max Planck Institute for Polymer Research has now developed a new material concept that potentially allows efficient blue OLEDs with a strongly simplified structure.

From televisions to smartphones: (OLEDs) are nowadays finding their way into many devices that we use every day. To display an image, they are needed in the three primary colors red, green and blue. In particular, for are still difficult to manufacture because blue light—physically spoken—has a , which makes the development of materials difficult.

Especially the presence of minute quantities of impurities in the material that cannot be removed plays a decisive role in the performance of these materials. These impurities— , for example—form obstacles for electrons to move inside the diode and participate in the light-generation process. When an electron is captured by such an obstacle, its energy is not converted into light but into heat. This problem, known as “charge trapping”, occurs primarily in blue OLEDs and significantly reduces their efficiency.

According to a person with direct knowledge of the matter, representatives from Tesla are planning to meet India’s commerce minister this month to discuss the possibility of constructing a factory for producing an all-new $24,000 electric car. Tesla has expressed interest in manufacturing low-cost electric vehicles for both the local Indian market and exports. This meeting would mark the most significant discussions between Tesla and the Indian government since Elon Musk’s meeting with Prime Minister Narendra Modi in June, where he expressed his intention to make a substantial investment in the country.

There are now over 1.9 million orders for the long-awaited Tesla Cybertruck, per a crowd-sourced data tracker. Speaking on an Earnings Call earlier this week, Tesla CEO Elon Musk stated that demand for the Cybertruck is “so off the hook, you can’t even see the hook.”

Given that Tesla plans to produce 375,000 Cybertrucks a year at peak capacity, new orders will technically take around 5 years to arrive. That said, a significant amount of reservation holders may not follow through with their purchase — after all, the deposit to reserve a Cybertruck was only $100. The Cybertruck is being produced at Giga Texas, although it’s a possibility it could also be built at Giga Mexico when the proposed factory is up and running in a few years’ time.

It will be interesting to see if the Cybertruck will be offered outside of North America. Currently, those in Tesla’s European and Asian markets can pre-order the truck. That said, the Cybertruck’s large size and hefty weight could make selling it overseas a serious challenge. For example, in several European nations it would have to be classed as a commercial truck or semi.

With US car thefts up 25.1% since 2019, it’s clear that high-tech key fob immobilizers aren’t cutting the mustard. But this might: UMich researchers have created a charmingly low-tech anti-theft device that turns the whole car into a security keypad.

Keyless entry and ignition are a brilliant step up in convenience from the old “stick key in hole and turn” method of starting cars, but thieves and hackers with a bit of know-how and some specialist gear are finding late-model keyless cars quick and easy to break into and steal. Between this kind of thing and Tik Tok car theft challenges, criminals are having a field day in the post-COVID era.

A team at the University of Michigan has come up with a fun solution that doesn’t use wireless signals at all. The “Battery Sleuth,” as they’ve called it, sits between the car’s battery and its electrical system, and measures fluctuations in voltage, looking for a specific set of voltage changes that act as a secret handshake of sorts between driver and car. Only when this handshake is complete will the device let the full power of the battery through to fire up the starter motor.