Toggle light / dark theme

In the simplest terms, nearly every modern car on the planet uses disk brakes: a rotor attached to a hub with a caliper with brake pads fixed to the control arm at each wheel. The driver presses the brake pedal and hydraulic fluid is pushed down the brake lines into the caliper, expanding the pistons and pushing the brake pads against the rotor, slowing down the rotation of the rotor connected to the hub, thus slowing down the wheel.

There are other systems, like drum brakes, air brakes, band brakes, the Flintstones method, et cetera, that have also been around since the dawn of the automotive industry. The concept almost always remains the same: using friction to slow down. And so it doesn’t go unsaid, yes, there are compression brake systems as well, but that’s entirely different.

Mercedes-Benz has put a new spin on an age-old concept with what it calls “in-drive brakes” for electric vehicles. The system being developed at the company’s research and development department in Sindelfingen, Germany, integrates the brakes right into the drivetrain, in an arrangement that works very much like a transmission brake. It resembles clutch plates – but with a unique twist.

A study reveals that while levels of common contaminants are low, other elements are found in high concentrations in waters associated with an abandoned lithium mine.

A new study suggests that lithium ore and mining waste from a historic lithium mine west of Charlotte, North Carolina, are unlikely to pollute nearby waters with common contaminants like arsenic and lead.

However, high levels of other metals — namely, lithium, rubidium, and cesium — do occur in waters associated with the mine.

Researchers have discovered a way to recycle the tiny particles used to create supraparticle lasers, a technology that precisely controls light at a very small scale. The breakthrough could help manage these valuable materials in a more sustainable way.

Supraparticle lasers work by trapping light inside a tiny sphere made of special particles called quantum dots, which can absorb, emit, and amplify light very efficiently.

They are made by mixing quantum dots in a solution that helps them stick together in tiny bubbles. However, not all attempts succeed, and even successful lasers degrade over time. This leads to wasted materials, which can be expensive.

The ability of plants to convert sunlight into food is an enviable superpower. Now, researchers have shown they can get animal cells to do the same thing.

Photosynthesis in plants and algae is performed by tiny organelles known as chloroplasts, which convert sunlight into oxygen and chemical energy. While the origins of these structures are hazy, scientists believe they may have been photosynthetic bacteria absorbed by primordial cells.

Our ancestors weren’t so lucky, but now researchers from the University of Tokyo have managed to rewrite evolutionary history. In a recent paper, the team reported they had successfully implanted chloroplasts into hamster cells where they generated energy for at least two days via the photosynthetic electron transport process.

Water splitting—breaking water molecules into hydrogen and oxygen—is a promising pathway to sustainable energy. However, this process has long been challenged by the slow chemical kinetics of the oxygen evolution reaction that make hydrogen production inefficient and costly.

An international research team has now uncovered a solution. By using special crystals with unique intrinsic “chiral” structures—meaning they have a distinctive left or right-handed atomic arrangement—researchers have dramatically improved the water splitting process.

The findings are published in the journal Nature Energy.

Researchers at Tokyo University of Science have developed a solar cell-based optoelectronic device that mimics human synapses for efficient edge AI processing.


Artificial intelligence (AI) is becoming increasingly useful for the prediction of emergency events such as heart attacks, natural disasters, and pipeline failures. This requires state-of-the-art technologies that can rapidly process data. In this regard, reservoir computing, specially designed for time-series data processing with low power consumption, is a promising option.

It can be implemented in various frameworks, among which physical reservoir computing (PRC) is the most popular. PRC with optoelectronic artificial synapses (junction structures that permit a nerve cell to transmit an electrical or chemical signal to another cell) that mimic human synaptic elements are expected to have unparalleled recognition and processing capabilities akin to the human visual system.

However, PRC based on existing self-powered optoelectronic synaptic devices cannot handle time-series data across multiple timescales, present in signals for monitoring infrastructure, natural environment, and health conditions.

Discovery enables manufacturing of ultrathin solar panels, advanced optoelectronics.

By creating a new way for light and matter to interact, researchers at the University of California, Irvine have enabled the manufacturing of ultrathin silicon solar cells that could help spread the energy-converting technology to a vast range of applications, including thermoelectric clothing and onboard vehicle and device charging.

The development, subject of a paper recently published as the cover story in the journal ACS Nano, hinges on the UC Irvine researchers’ conversion of pure silicon from an indirect to a direct bandgap semiconductor through the way it interacts with light.

A breakthrough at Rice University enhances thermophotovoltaic systems with a new thermal emitter design, achieving over 60% efficiency.

This could transform energy conversion, making it a viable alternative to batteries for grid-scale energy storage and sustainable industry practices.

Researchers at Rice University have developed an innovative way to enhance thermophotovoltaic (TPV) systems, which convert heat into electricity using light. Drawing inspiration from quantum physics, engineer Gururaj Naik and his team designed a highly efficient thermal emitter that works within realistic design constraints.

Oil and gas extraction in places like Texas’ Permian Basin leads to several waste products, including significant amounts of wastewater and flares firing into the sky. Texas Engineer Vaibhav Bahadur is researching how those byproducts, which are harmful to the environment, could be repurposed to serve as key elements in the creation of “green” hydrogen.

Bahadur, an associate professor in the Walker Department of Mechanical Engineering, recently published a new paper in the journal Desalination about a new way to potentially produce green hydrogen. It involves using the energy wasted via gas flaring to power reverse osmosis, a common, low-energy technique used for municipal water treatment. Hydrogen production requires pristine water, and this process satisfies that need by removing salts and other elements from the equation.

Learn more about green hydrogen in the Q&A with Bahadur below, as well as his research, next steps and its broader implications.