Toggle light / dark theme

As artificial intelligence (AI) becomes increasingly ubiquitous in business and governance, its substantial environmental impact — from significant increases in energy and water usage to heightened carbon emissions — cannot be ignored. By 2030, AI’s power demand is expected to rise by 160%. However, adopting more sustainable practices, such as utilizing foundation models, optimizing data processing locations, investing in energy-efficient processors, and leveraging open-source collaborations, can help mitigate these effects. These strategies not only reduce AI’s environmental footprint but also enhance operational efficiency and cost-effectiveness, balancing innovation with sustainability.

Page-utils class= article-utils—vertical hide-for-print data-js-target= page-utils data-id= tag: blogs.harvardbusiness.org, 2007/03/31:999.386782 data-title= How Companies Can Mitigate AI’s Growing Environmental Footprint data-url=/2024/07/how-companies-can-mitigate-ais-growing-environmental-footprint data-topic= Environmental sustainability data-authors= Christina Shim data-content-type= Digital Article data-content-image=/resources/images/article_assets/2024/06/Jul24_04_1298348302-383x215.jpg data-summary=

Practical steps for reducing AI’s surging demand for water and energy.

Researchers have devised a passive thermal regulation mechanism using common materials that selectively manage radiant heat, providing a sustainable way to significantly improve building energy efficiency and comfort.

Engineers at Princeton and UCLA have developed a passive mechanism to cool buildings in the summer and warm them in the winter.

In an article recently published in the journal Cell Reports Physical Science, they report that by restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.

Tesla’s Megapack, with its ability to store and supply large amounts of renewable energy, has the potential to revolutionize the energy industry and contribute to a more sustainable future.

Questions to inspire discussion.

What is Tesla’s Megapack?
—Tesla’s Megapack is a grid-scale energy storage product that can store and supply large amounts of renewable energy, revolutionizing the energy industry.

UChicago Pritzker Molecular Engineering Prof. Y. Shirley Meng’s Laboratory for Energy Storage and Conversion has created the world’s first anode-free sodium solid-state battery.

With this research, the LESC – a collaboration between the UChicago Pritzker School of Molecular Engineering and the University of California San Diego’s Aiiso Yufeng Li Family Department of Chemical and Nano Engineering – has brought the reality of inexpensive, fast-charging, high-capacity batteries for electric vehicles and grid storage closer than ever.

“Although there have been previous sodium, solid-state, and anode-free batteries, no one has been able to successfully combine these three ideas until now,” said UC San Diego PhD candidate Grayson Deysher, first author of a new paper outlining the team’s work.

Tesla is preparing to start construction on its upcoming high-volume Semi factory in Nevada, as suggested by huge steel deliveries recently arriving to the site.

In a post on Sunday, X user HinrichsZane shared drone footage from the site of the upcoming Semi factory, which is being built as part of an expansion to Tesla’s existing Gigafactory in Sparks, Nevada. In the footage, you can see a massive amount of steel that was recently delivered to the site, suggesting that the company is nearing the start of construction on the long-awaited Semi factory.

You can see Hinrich’s full video below.

In addition to storm surge along the Texas coast, Hurricane Beryl is expected to bring flooding to rivers and creeks inland. That’s raising new concerns about a dam that’s already damaged from flooding earlier this year. Watch the video to see where the problem is and how it could impact drinking water for millions of people. — Videos from The Weather Channel | weather.com