Toggle light / dark theme

“Japan Traps the Impossible”: Scientists Develop Breakthrough Method to Extract Ammonia From Air and Water With Unmatched Precision

IN A NUTSHELL 🌱 Researchers at the University of Tokyo developed a method to produce ammonia using artificial photosynthesis. 🔬 The process mimics natural nitrogen fixation by cyanobacteria, utilizing atmospheric nitrogen, water, and sunlight. ⚙️ This method uses a combination of iridium and molybdenum catalysts to enhance reaction efficiency. 🌍 The innovation promises to reduce

Turning fallen leaves into sustainably made paper: Ukrainian scientist selected as a finalist for the Young Inventors Prize 2024

Munich, 4 June 2024 – According to the World Wildlife Fund (WWF), the pulp and paper industry is one of the largest industrial sectors in the world and has an enormous influence on global forests. This sector accounts for 13–15% of total wood consumption and uses between 33–40% of all industrial wood traded globally. In search of more sustainable solutions for paper production, 23-year-old Ukrainian inventor Valentyn Frechka developed a method for recycling leaf litter into paper. Frechka is a finalist for the Young Inventors Prize of the European Inventor Award 2024, in recognition of his promising work towards a circular economy and addressing one of the United Nations’ Sustainable Development Goals (SDGs). He was selected from over 550 candidates for this year’s edition.

Using new technology to recycle fallen leaves into paper

The global loss of trees is known to significantly exacerbate climate change, increasing air pollution levels, causing the loss of biodiversity, and disrupting the water cycle. Global warming also leads to issues such as soil erosion and reduced freshwater availability. It also increases costs for managing environmental problems such as flooding.

Facing the storm: Researchers model a new line of coastal defense with horizontal levees

As ocean levels rise, coastal communities face an ever-increasing risk of severe flooding. The existing infrastructure protecting many of these communities was not built to withstand the combined threat of rising seas and severe storms seen in this century.

While reinforcing existing flood barriers poses a costly challenge for at-risk communities, it also provides the opportunity to introduce innovative solutions that can provide both flood prevention and environmental benefits.

A group of researchers at UC Santa Cruz and the U.S. Geological Survey has evaluated one such flood mitigation solution, which can reinforce while creating environmentally beneficial coastal habitats. In a study published on May 9 in Scientific Reports, the team evaluated the effectiveness of “horizontal levees”—traditional levees retrofitted with a sloping, wetland border—as a means of strengthening shorelines against the threat of rising sea levels.

Advancements in (Ca, Ba)ZrS₃ solar cells using innovative spinel hole transport layers

Solar power has long been a beacon of hope in our pursuit of clean energy. However, the road to sustainable, high-efficiency photovoltaics has been riddled with roadblocks such as toxicity and instability in widely used lead halide perovskites. Could we engineer a solar cell that delivers not just high performance, but also durability, stability and environmental safety?

That question led us to (Ca, Ba)ZrS3, a chalcogenide perovskite with immense promise. Unlike its lead-based counterparts, this material boasts strong thermal and chemical stability. More importantly, its bandgap can be finely tuned down to 1.26 eV with less than 2% calcium doping, placing it squarely within the Shockley-Queisser limit for optimal photovoltaic conversion.

For the first time, my research team at the Autonomous University of Querétaro explored an innovative idea of pairing (Ca, Ba)ZrS3 with next-generation inorganic spinel hole transport layers (HTLs). We integrated NiCo2O4, ZnCo2O4, CuCo2O4, and SrFe2O4 into solar cells and simulated their performance using SCAPS-1D.

Moving pictures: Researchers use movies to diagnose EV battery failure

Charging electric-vehicle batteries in Ithaca’s frigid winter can be tough, and freezing temperatures also decrease the driving range. Hot weather can be just as challenging, leading to decomposition of battery materials and, possibly, catastrophic failure.

For (EVs) to be widely accepted, safe and fast-charging lithium-ion batteries need to be able to operate in extreme temperatures. But to achieve this, scientists need to understand how materials used in EVs change during temperature-related chemical reactions, a so-far elusive goal.

Now, Cornell chemists led by Yao Yang, Ph.D. ‘21, assistant professor of chemistry and chemical biology in the College of Arts and Sciences, have developed a way to diagnose the mechanisms behind battery failure in extreme climates using electron microscopy. Their first-of-its-kind operando (“operating”) electrochemical transmission electron microscopy (TEM) enables them to watch chemistry in action and collect real-time movies showing what happens to energy materials during temperature changes.

Quantum eyes on energy loss: Diamond quantum imaging can enable next-gen power electronics

Improving energy conversion efficiency in power electronics is vital for a sustainable society, with wide-bandgap semiconductors like GaN and SiC power devices offering advantages due to their high-frequency capabilities. However, energy losses in passive components at high frequencies hinder efficiency and miniaturization. This underscores the need for advanced soft magnetic materials with lower energy losses.

In a study published in Communications Materials, a research team led by Professor Mutsuko Hatano from the School of Engineering, Institute of Science, Tokyo, Japan, has developed a novel method for analyzing such losses by simultaneously imaging the amplitude and phase of alternating current (AC) stray fields, which are key to understanding hysteresis losses.

Using a diamond quantum sensor with nitrogen-vacancy (NV) centers and developing two protocols—qubit frequency tracking (Qurack) for kHz and quantum heterodyne (Qdyne) imaging for MHz frequencies—they realized wide-range AC magnetic field imaging. This study was carried out in collaboration with Harvard University and Hitachi, Ltd.

TEMPO molecule enhances stability and performance of perovskite solar cells

Perovskite solar cells are among the most promising candidates for the next generation of photovoltaics: lightweight, flexible, and potentially very low-cost. However, their tendency to degrade under sunlight and heat has so far limited widespread adoption. Now, a new study published in Joule presents an innovative and scalable strategy to overcome this key limitation.

A research team led by the École Polytechnique Fédérale de Lausanne (EPFL), in collaboration with the University of Applied Sciences and Arts of Western Switzerland (HES⁠-⁠SO) and the Politecnico di Milano, has developed a bulk passivation technique that involves adding the molecule TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) to the perovskite film and applying a brief infrared heating pulse lasting just half a second.

This approach enables the repair of near-invisible crystalline defects inside the material, boosting solar cell efficiency beyond 20% and maintaining that performance for several months under operating conditions. Using positron annihilation spectroscopy—a method involving antimatter particles that probe atomic-scale defects—the researchers confirmed a significant reduction in vacancy-type defects.

/* */