Toggle light / dark theme

Researchers at SLAC have made groundbreaking strides in understanding the photoelectric effect, initially described by Einstein.

They’ve developed a technique using attosecond X-ray pulses to measure electron-emission delays, revealing discrepancies in existing theories by showing larger-than-expected delays. Their method provides a new tool to study electron-electron interactions, which are fundamental to many technologies, including semiconductors and solar cells.

New Photoelectric Effect Insights

For the past decade, disordered rock salt has been studied as a potential breakthrough cathode material for use in lithium-ion batteries and a key to creating low-cost, high-energy storage for everything from cell phones to electric vehicles to renewable energy storage.

A new MIT study is making sure the material fulfills that promise.

Led by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering, a team of researchers describe a new class of partially disordered rock salt cathode, integrated with polyanions—dubbed disordered rock salt-polyanionic spinel, or DRXPS—that delivers at high voltages with significantly improved cycling stability.

Using a polymer to make a strong yet springy thin film, scientists led by the Department of Energy’s Oak Ridge National Laboratory are speeding the arrival of next-generation solid-state batteries. This effort advances the development of electric vehicle power enabled by flexible, durable sheets of solid-state electrolytes.

The sheets may allow scalable production of future solid-state batteries with higher energy density electrodes. By separating negative and positive electrodes, they would prevent dangerous electrical shorts while providing high-conduction paths for ion movement.

These achievements foreshadow greater safety, performance and compared to current batteries that use liquid electrolytes, which are flammable, chemically reactive, thermally unstable and prone to leakage.

Since 2014, solar capacity at K-12 schools has more than quadrupled across the US, according to a new report from clean energy nonprofit Generation180.

The “Brighter Future: A Study of Solar on K-12 Schools” report highlights that over 6.2 million students – more than 1 in 9 – now attend schools powered by solar. In 2023 alone, more than 800 schools added solar panels, meaning that at least one school went solar every single day during the 2022–23 school year.

“The benefits of solar energy are now reaching a broad range of schools across the country, including those in under-resourced communities that stand to gain the most from the cost savings and educational opportunities that solar technology provides. We want all schools and communities, regardless of their size, geography, or wealth, to have access to affordable, clean energy,” says Tish Tablan, the report’s lead author and senior director of Generation180’s Electrify Our Schools Program.

Summary: Researchers developed a brain-inspired AI technique using neural networks to model the challenging quantum states of molecules, crucial for technologies like solar panels and photocatalyst.

This new approach significantly improves accuracy, enabling better prediction of molecular behaviors during energy transitions. By enhancing our understanding of molecular excited states, this research could revolutionize material prototyping and chemical synthesis.

Thorium may sound like something out of a Marvel comic book, but the radioactive metal could provide a very real, renewable energy source.

Chinese scientists have been working on a molten salt nuclear power plant using thorium for years. They even created a prototype reactor in 2021, according to the International Atomic Energy Agency.

The plan is to have a “safer, greener” power station up and running by 2025 in the Gobi Desert, where the small, experimental reactor is located, per Interesting Engineering.