Menu

Blog

Archive for the ‘sustainability’ category: Page 241

Mar 11, 2022

California wants to use electric cars to back up the power grid

Posted by in categories: sustainability, transportation

https://youtube.com/watch?v=L8bdHBL0Vfc

A collaboration between the automaker and the utility will test-drive using bidirectional charging to power homes during blackouts.

Mar 11, 2022

How a Vision for a Solar Car Sparked a Career―and MIT’s Solar Electric Vehicle Team

Posted by in categories: education, engineering, solar power, sustainability, transportation

Engineering projects need goals, and James Worden ’89 set an especially engaging and enduring one for himself as a high school student in the early 1980s while pursuing his passion for homebuilt go-karts.


The MIT Alumni Association seeks to engage and inspire the MIT global community to make a better world. It provides a lifelong community for MIT graduates, a launching pad for students, and growing connection among MIT friends.

Mar 11, 2022

Filling a gas-powered vehicle can still be cheaper than charging an electric one

Posted by in categories: sustainability, transportation

Charging an electric car at a public charging station can cost as much or more than filling one with gasoline in some cases.

Mar 11, 2022

Startup aims to make waves with powerful long-range electric cruiser

Posted by in categories: sustainability, transportation

Last year, a team of former SpaceX engineers launched Californian marine startup Arc with a plan to develop a luxury electric cruiser with “far superior range, acceleration and performance than any boat in its class.” Now a pre-production Arc One has spent a day of testing on Lake Arrowhead ahead of deliveries to the first customers later in the year.

The first boat out of the company’s factory in Los Angeles is being aimed squarely at the luxury end of the market, and will be produced in very limited numbers.

The spec sheet for the Arc One is actually pretty thin, but the development team has recently upped the power of the electric motor to 500 hp (373 kW) for a top speed of 40 mph (34 knots/64 km/h). The battery size has also been increased by 10 percent to 220 kWh – that’s “three times the capacity of a Tesla Model Y” and is reckoned big enough for users to stay out on the water for between three and five hours per charge, though high speeds will drain the battery quicker than cruising at lower speeds.

Mar 11, 2022

Ford and Purdue University Solved the Biggest Problem With Electric Vehicles

Posted by in categories: sustainability, transportation

Ford and Purdue University researchers have developed a new, patent-pending charging system that solves one of the biggest problems with electric vehicles. Of course, we’re talking about the charging time it takes to top off a battery versus spending a few minutes at a gasoline pump.

Aside from range, charging time is one of the biggest problems for current electric vehicles. There’s plenty to love about EVs, but having to sit for 20–30 minutes and wait for the battery to recharge isn’t ideal, which is why Ford’s new cooling cables promise to recharge an electric vehicle in roughly 5-minutes.

Even with DC fast charging appearing at more Tesla stations, most vehicles with ideal battery, charger, and cable conditions still take upwards of at least 20 minutes. The video below explains how most Tesla systems can handle upwards of 520 amps of current, which is quite a lot. However, Ford and Purdue can deliver over 2,400 amps to their vehicles, resulting in drastically faster charging times.

Mar 9, 2022

“Power suits” for EVs promise an acceleration and 25% range boost

Posted by in categories: energy, sustainability, transportation

There is an exciting branch of battery research that involves combining the strength and durability of next-generation materials with their energy storage potential. This could see car panels double as their batteries, for example, and in a new example of what this could look like scientists have developed a “power suit” for electric vehicles that could not only extend their range, but give them a handy boost in acceleration at the same time.

Sometimes known as structural batteries, we’ve seen some interesting recent advances in this space from research groups and even big-name automakers. Back in 2013, Volvo demonstrated carbon fiber body panels with energy storage potential, and we’ve seen other teams show off similar concepts since. These projects sought to combine the high energy density of batteries with the ultra-fast discharge rates of supercapacitors, in materials strong enough to serve as a car’s exterior.

This new breakthrough continues this line of thinking, with scientists at University of Central Florida and NASA designing a new material featuring unique properties that allow for not just impressive energy storage potential, but also the strength needed to endure a car crash.

Mar 9, 2022

Pilot project producing gasoline from CO2 hydrogenation completes its trials

Posted by in categories: chemistry, energy, physics, sustainability, transportation

The world’s first demonstration device to produce 1,000 tons of gasoline per year from carbon dioxide (CO2) hydrogenation has completed its technology evaluation and trial operation.

Located in the Zoucheng Industrial Park, Shandong province, China, the project has been jointly developed by the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) and the Zhuhai Futian Energy Technology company. The hydrogenation of CO2 into liquid fuels and chemicals can not only realize the resource utilization of CO2 but also facilitate the storage and transportation of renewable energy.

However, activation and selective conversion of CO2 are challenging. A technology that can selectively produce energy-dense, value-added hydrocarbon fuels will provide a new route to promote the clean, low-carbon energy revolution.

Mar 8, 2022

As prices top $4 a gallon, should you consider an electric vehicle? One consideration: They’re more expensive to insure and repair. Here’s why

Posted by in categories: economics, sustainability, transportation

Tesla will sell car insurance, but electric-vehicle insurance and repairs are more expensive than for traditional cars. Here’s why.


The average cost of repairs are nearly 3% higher for a small EV versus a small internal-combustion engine car, says CCC Intelligent Solutions, a data and consulting firm that has examined the impact of EVs on the automotive, insurance and repair industries.

The same researchers found that spending on replacemet parts as a share of the overall repair costs was higher for a small EV despite that EV having 9.1 parts replaced per claim on average, versus 9.6 parts for small ICE cars. Access the full report here.

Continue reading “As prices top $4 a gallon, should you consider an electric vehicle? One consideration: They’re more expensive to insure and repair. Here’s why” »

Mar 8, 2022

Artificial intelligence helps grow algae for producing clean biofuel

Posted by in categories: robotics/AI, sustainability

Mar 8, 2022

A New Drone System Can Clean Hard-to-Reach Solar Panels

Posted by in categories: drones, solar power, sustainability